首页> 外文OA文献 >First-Arrival Picking for Microseismic Monitoring Based on Deep Learning
【2h】

First-Arrival Picking for Microseismic Monitoring Based on Deep Learning

机译:基于深度学习的微震监测第一到来挑选

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In microseismic monitoring, achieving an accurate and efficient first-arrival picking is crucial for improving the accuracy and efficiency of microseismic time-difference source location. In the era of big data, the traditional first-arrival picking method cannot meet the real-time processing requirements of microseismic monitoring process. Using the advanced idea of deep learning-based end-to-end classification and the prominent feature extraction advantages of a fully convolution neural network, this paper proposes a first-arrival picking method of effective signals for microseismic monitoring based on UNet++ network, which can significantly improve the accuracy and efficiency of first-arrival picking. In this paper, we first introduced the methodology of the UNet++-based picking method. And then, the performance of the proposed method is verified by the experiments with finite-difference forward modeling simulated signals and actual microseismic records under different signal-to-noise ratios, and finally, comparative experiments are performed using the U-Net-based first-arrival picking algorithm and the Short-Term Average to Long-Term Average (STA/LTA) algorithm. The results show that compared to the U-Net network, the proposed method can obviously improve the first-arrival picking accuracy of the low signal-to-noise ratio microseismic signals, achieving significantly higher accuracy and efficiency than the STA/LTA algorithm, which is famous for its high efficiency in traditional algorithms.
机译:在微震监测中,实现准确高效的第一到来拣选对于提高微震时间差源位置的准确性和效率至关重要。在大数据的时代,传统的第一到来拣选方法不能满足微震监测过程的实时处理要求。利用基于深度学习的端到端分类的高级思想和完全卷积神经网络的突出特征提取优势,提出了一种基于UNET ++网络的微震监测有效信号的第一到来拣选方法,可以显着提高初始拣选的准确性和效率。在本文中,我们首先介绍了基于UNET ++的拣选方法的方法。然后,通过在不同信噪比下的有限差异前向建模模拟信号和实际微震记录的实验验证所提出的方法的性能,最后,使用基于U-Net的比较实验 - 争吵挑选算法和短期平均值到长期平均值(STA / LTA)算法。结果表明,与U-Net网络相比,所提出的方法可以明显提高低信噪比微震信号的第一到来拣选精度,实现比STA / LTA算法明显更高的准确性和效率,这以其高效率而闻名于传统算法。

著录项

  • 作者

    Xiaolong Guo;

  • 作者单位
  • 年度 2021
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号