首页> 外文OA文献 >Estimating Urban Shared-Bike Trips with Location-Based Social Networking Data
【2h】

Estimating Urban Shared-Bike Trips with Location-Based Social Networking Data

机译:估算与基于位置的社交网络数据的城市共享自行车旅行

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dockless shared-bikes have become a new transportation mode in major urban cities in China. Excessive number of shared-bikes can occupy a significant amount of roadway surface and cause trouble for pedestrians and auto vehicle drivers. Understanding the trip pattern of shared-bikes is essential in estimating the reasonable size of shared-bike fleet. This paper proposed a methodology to estimate the shared-bike trip using location-based social network data and conducted a case study in Nanjing, China. The ordinary least square, geographically weighted regression (GWR) and semiparametric geographically weighted regression (SGWR) methods are used to establish the relationship among shared-bike trip, distance to the subway station and check ins in different categories of the point of interest (POI). This method could be applied to determine the reasonable number of shared-bikes to be launched in new places and economically benefit in shared-bike management.
机译:Dockless Shared-Bikes已成为中国主要城市城市的新交通模式。过多的共享自行车可以占据大量的道路表面,并对行人和汽车司机造成麻烦。了解共享自行车的旅行模式对于估计共享自行车舰队的合理规模至关重要。本文提出了一种方法来估计基于地点的社交网络数据的共享自行车旅行,并在中国南京进行案例研究。普通的最小正方形,地理加权回归(GWR)和半游戏地理加权回归(SGWR)方法用于建立共享自行车行程之间的关系,到地铁站的距离,以及在不同类别的兴趣点中检查(POI )。可以应用这种方法来确定在新地方发起的合理数量的共享自行车,在共享自行车管理中经济地受益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号