首页> 外文OA文献 >Digital nets with infinite digit expansions and construction of folded digital nets for quasi-Monte Carlo integration
【2h】

Digital nets with infinite digit expansions and construction of folded digital nets for quasi-Monte Carlo integration

机译:具有无限位数的数字网和折叠数码网的折叠数字网,用于拟蒙特卡罗集成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we study quasi-Monte Carlo integration of smooth functionsusing digital nets. We fold digital nets over $mathbb{Z}_{b}$ by means of the$b$-adic tent transformation, which has recently been introduced by theauthors, and employ such emph{folded digital nets} as quadrature points. Wefirst analyze the worst-case error of quasi-Monte Carlo rules using foldeddigital nets in reproducing kernel Hilbert spaces. Here we need to permitdigital nets with "infinite digit expansions," which are beyond the scope ofthe classical definition of digital nets. We overcome this issue by consideringthe infinite product of cyclic groups and the characters on it. We then give anexplicit means of constructing good folded digital nets as follows: we usehigher order polynomial lattice point sets for digital nets and show that thecomponent-by-component construction can find good emph{folded higher orderpolynomial lattice rules} that achieve the optimal convergence rate of theworst-case error in certain Sobolev spaces of smoothness of arbitrarily highorder.
机译:在本文中,我们研究了使用数字网络的光滑函数的准蒙特卡罗积分。我们通过作者最近引入的$ b $ -adic帐篷变换将数字网络折叠在$ mathbb {Z} _ {b} $之上,并采用这样的 emph {folded digital nets}作为正交点。我们首先在折叠内核希尔伯特空间中使用折叠数字网络分析准蒙特卡罗规则的最坏情况误差。在这里,我们需要允许具有“无限数字扩展”的数字网络,这超出了数字网络的经典定义的范围。我们通过考虑循环群的无限乘积及其上的字符来克服这个问题。然后,我们给出了一种构造良好折叠数字网络的明确方法,如下所示:我们对数字网络使用高阶多项式格点集,并表明逐个分量构造可以找到良好的 emph {折叠高阶多项式格规则},以实现最佳收敛任意高阶平滑度在某些Sobolev空间中最坏情况的错误率

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号