首页> 外文OA文献 >A Hybrid Machine Learning Model for Electricity Consumer Categorization Using Smart Meter Data
【2h】

A Hybrid Machine Learning Model for Electricity Consumer Categorization Using Smart Meter Data

机译:使用智能电表数据的电力消费者分类混合机械学习模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Time-series smart meter data can record precisely electricity consumption behaviors of every consumer in the smart grid system. A better understanding of consumption behaviors and an effective consumer categorization based on the similarity of these behaviors can be helpful for flexible demand management and effective energy control. In this paper, we propose a hybrid machine learning model including both unsupervised clustering and supervised classification for categorizing consumers based on the similarity of their typical electricity consumption behaviors. Unsupervised clustering algorithm is used to extract the typical electricity consumption behaviors and perform fuzzy consumer categorization, followed by a proposed novel algorithm to identify distinct consumer categories and their consumption characteristics. Supervised classification algorithm is used to classify new consumers and evaluate the validity of the identified categories. The proposed model is applied to a real dataset of U.S. non-residential consumers collected by smart meters over one year. The results indicate that large or special institutions usually have their distinct consumption characteristics while others such as some medium and small institutions or similar building types may have the same characteristics. Moreover, the comparison results with other methods show the improved performance of the proposed model in terms of category identification and classifying accuracy.
机译:时间序列智能仪表数据可以记录智能电网系统中每个消费者的精确电力消耗行为。基于这些行为的相似性更好地了解消费行为和有效的消费者分类,对灵活的需求管理和有效能量控制有所了解。在本文中,我们提出了一种混合机器学习模型,包括无监督的聚类和监督分类,用于基于其典型电力消耗行为的相似性对消费者进行分类。无监督的聚类算法用于提取典型的电力消耗行为并执行模糊消费者分类,然后进行模糊消费者分类,然后是建议的小说算法来识别不同的消费类别及其消费特征。监督分类算法用于对新的消费者进行分类并评估所识别类别的有效性。所提出的模型应用于由智能米收集一年的美国非住宅消费者的真实数据集。结果表明,大型或特殊机构通常具有不同的消费特征,而其他一些中型和小型机构或类似的建筑物类型可能具有相同的特征。此外,与其他方法的比较结果显示了在类别识别和分类准确性方面提高了所提出的模型的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号