首页> 外文OA文献 >Ordinal regression modelling between proportional odds and non-proportional odds
【2h】

Ordinal regression modelling between proportional odds and non-proportional odds

机译:比例赔率与非比例赔率之间的序数回归建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The proportional odds model has become the most widely used model in ordinal regression. Despite favourable properties in applications it is often an inappropriate simplification yielding bad data fit. The more flexible non-proportional odds model or partial proportional odds model have the disadvantage that common estimation procedures as Fisher scoring often fail to converge. Then neither estimates nor test statistics for the validity of partial proportional odds models are available. In the present paper estimates are proposed which are based on penalization of parameters across response categories. For appropriate smoothing penalized estimates exist almost always and are used to derive test statistics for the assumption of partial proportional odds. In addition, models are considered where the variation of parameters across response categories is constrained. Instead of using prespecified scalars (Peterson&Harrell 1990) penalized estimates are used in the identification of these constrained models. The methods are illustrated by various applications. The application to the retinopathy status in chronic diabetes shows how the proposed test statistics may be used in the diagnosis of partial proportional odds models in order to prevent artefacts.
机译:比例赔率模型已成为序数回归中使用最广泛的模型。尽管在应用程序中具有良好的性能,但通常还是不适当的简化,从而导致不良的数据拟合。较灵活的非比例赔率模型或偏比例赔率模型的缺点是,通常的估算程序(如Fisher评分)通常无法收敛。然后,既没有估计值,也没有关于部分比例赔率模型有效性的检验统计数据。在本文中,提出了基于跨响应类别的参数惩罚的估计。对于适当的平滑处理,几乎总是存在惩罚性估计,并且用于估计部分比例赔率的测试统计量。另外,考虑了在响应类别中参数变化受到约束的模型。代替使用预先指定的标量(Peterson&Harrell 1990),在这些约束模型的识别中使用了惩罚估计。各种应用举例说明了这些方法。在慢性糖尿病视网膜病变状态中的应用表明,建议的检验统计量可如何用于诊断部分比例赔率模型,以防止伪像。

著录项

  • 作者

    Tutz Gerhard; Scholz T.;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号