首页> 外文OA文献 >Radiochromic film as a tool to study and validate a commercial Monte Carlo dose calculation algorithm for electron radiotherapy
【2h】

Radiochromic film as a tool to study and validate a commercial Monte Carlo dose calculation algorithm for electron radiotherapy

机译:放射性变色薄膜作为研究和验证电子放射治疗的商业蒙特卡罗剂量计算算法的工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Radiotherapy is a type of cancer treatment to suppress tumour growth by employing ionising radiation. External beam radiation is the most common form of radiotherapy and uses ionising radiation such as photon and electron beams. Megavoltage electron beams can be used to treat relatively superficial tumours of less than 5 cm depth such as skin, scalp, chest walls, breast, and nodal boost. In the radiotherapy process, the treatment planning system plays an important role in simulating dose distributions in a patient that would be delivered by the treatment machine. Conventional planning algorithms are based on relatively simple beam models: beam profiles are measured in homogeneous media, and modified to approximate changes in field shape and media. Predicting dose becomes difficult with complex treatment geometries such as beam obliquity, small field sizes and tissue inhomogeneities. In these complex patient geometries, the Monte Carlo method is known to be the most accurate to calculate dose distributions. Recently an electron Monte Carlo (eMC) dose calculation algorithm has been incorporated in XiO treatment planning systems (Elekta/CMS XiO). This algorithm is based on the Voxel Monte Carlo (VMC) code which allows fast dose calculations in voxelised heterogeneous media. This study aims to evaluate XiO eMC’s capability to accurately predict dose distribution. Simulations with the eMC module were performed for 6, 12 and 18 MeV beams in different beam setups. In addition to standard large uniform fields, the effects of oblique incidence, small field size and inhomogeneous media were investigated in this thesis. A new measuring method was developed for high resolution, absolute dose measurement of these non-standard irradiations using radiochromic film. A portable holder was designed and constructed to hold films vertically in a reproducible setup submerged in a water phantom. The film measurements were performed and compared to the calculated XiO eMC 2D dose distributions using the gamma dose analysis and distance-to-agreement tool from the SNC Patient software (Sun Nuclear Corporation, Melbourne, FL). All 2D comparisons of film and XiO eMC were done by comparing absolute dose per monitor unit (MU). The experimental film method was verified with ionisation chamber measurements and the total uncertainty for the film measurement method was determined to be ±3% (2σ). In water beyond Dmax, XiO electron Monte Carlo and EBT3 film agree to within the measurement uncertainties i.e. ± 3% or ± 2 mm for all standard, oblique and circular fields for measurements. Differences between XiO eMC and EBT3 film of up to 9% occur close to the surface for the oblique and circular fields. For the inhomogeneous media, agreement between XiO and film was also within the calculation and measurement uncertainties in the water and lung like regions. Within the rib phantom, XiO was up to 10% higher than film. By comparison, agreement between XiO and film within the denser skull phantom is within the uncertainties. This method has extended the standard set of commissioning measurements to include clinically relevant conditions that focus on specific geometries that are difficult or impossible to measure using ionisation chambers. Radiochromic film in water proved to be a convenient high spatial resolution method to verify electron dose distribution in non-standard conditions including inhomogeneous media.
机译:放射疗法是通过采用电离辐射来抑制肿瘤生长的一种癌症治疗方法。外部束辐射是放射治疗的最常见形式,并使用电离辐射,例如光子束和电子束。兆伏电子束可用于治疗深度小于5厘米的相对浅表的肿瘤,例如皮肤,头皮,胸壁,乳房和淋巴结肿大。在放射治疗过程中,治疗计划系统在模拟患者的剂量分布(在治疗机中进行剂量分配)中起着重要作用。常规的计划算法基于相对简单的光束模型:在均匀介质中测量光束轮廓,并对其进行修改以近似于场形和介质的变化。对于复杂的治疗几何形状(例如光束倾斜度,小视野大小和组织不均匀性),很难预测剂量。在这些复杂的患者几何形状中,已知蒙特卡罗方法是计算剂量分布最准确的方法。最近,电子蒙特卡罗(eMC)剂量计算算法已被纳入XiO治疗计划系统(Elekta / CMS XiO)中。该算法基于Voxel Monte Carlo(VMC)代码,该代码可在体素化的异质介质中快速计算剂量。这项研究旨在评估XiO eMC准确预测剂量分布的能力。使用eMC模块对不同光束设置中的6、12和18 MeV光束进行了仿真。除了标准的大均匀场外,本文还研究了斜入射,小场大小和非均匀介质的影响。开发了一种新的测量方法,用于使用放射致变色胶片对这些非标准辐射进行高分辨率,绝对剂量测量。设计和构造了一种便携式支架,可将其垂直放置在浸没在水幻影中的可复制装置中。进行了胶片测量,并使用了SNC Patient软件(太阳核公司,墨尔本,佛罗里达州)的伽玛剂量分析和协议距离工具,将其与计算出的XiO eMC 2D剂量分布进行了比较。胶片和XiO eMC的所有2D比较都是通过比较每个监控器单位(MU)的绝对剂量完成的。通过电离室测量验证了实验膜方法,并且该膜测量方法的总不确定度确定为±3%(2σ)。在超过Dmax的水中,XiO电子的Monte Carlo和EBT3膜在测量不确定度(即± 3%或±所有标准,倾斜和圆形场的测量距离均为2 mm。 XiO eMC和EBT3膜之间的差异高达9%,发生在倾斜和圆形电场的表面附近。对于不均匀的介质,Xio和胶片之间的一致性也在水和肺样区域的计算和测量不确定性之内。在肋骨模型中,XiO比胶片高出10%。相比之下,XiO和较密的头骨幻影中的胶片之间的一致性在不确定性之内。该方法将调试测量的标准范围扩展到包括临床相关条件,这些条件集中于使用电离室难以或无法测量的特定几何形状。事实证明,水中的辐射致变色膜是一种便捷的高空间分辨率方法,可用于验证非标准条件(包括非均匀介质)中的电子剂量分布。

著录项

  • 作者

    Chan E;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号