首页> 外文OA文献 >Electric field driven manipulation of nanostructured metal oxide thin films: applications in chromic devices
【2h】

Electric field driven manipulation of nanostructured metal oxide thin films: applications in chromic devices

机译:纳米结构金属氧化物薄膜的电场驱动操作:在铬器件中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Chromism by definition is the process that induces coloration change in a material and is generally favourable for many applications when it is reversible. Many modern applications such as optical modulators, smart windows and optical displays are based on the chromic effect. This chromic effect is always aided with a compatible stimulus. In semiconductors, particularly those made of thin films, an induced coloration is often initiated by the intercalation of positive ions such as Li + or H + into the exposed active sites of the material’s structure. Nanostructure synthesis of semiconducting crystals continues to expand and evolve. Each synthesis method offers unique prospects that affect morphology, stoichiometry, crystallinity, dopant behaviour and eventually performance of the semiconducting crystals. Electric field driven methods such as anodization and electrodeposition are especially applicable since they are often carried out under ambient conditions with non-toxic electrolytes. In addition, manipulation of anodization and electrodeposition parameters is simple, depending upon facile changes of parameters such as voltage, current and electrolytes while delivering astounding results. In this PhD thesis, the author focuses on the electric field deposited and manipulated transition metal oxides (TMOs). The target TMOs are molybdenum trioxide (MoO 3 ), titanium dioxide (TiO 2 ) and niobium pentoxide (Nb 2 O 5 ) which have suitable band energy diagrams and crystal structure for chromic devices. The author shows that these TMOs can be synthesised into high surface area, highly crystalline and homogenous nanostructures using the two aforementioned techniques. However, these potential candidates also experience inherent limitations that restrict their chromic performances. Therefore the author of this thesis intended to seek out solutions in overcoming these limitations.  In order to achieve the goals of this PhD research program, the author comprehensively investigated chromic properties of nanostructured MoO 3 , TiO 2 and Nb 2 O 5 and assessed their chromic performance and potential strategies to enhance them. Based on the strategies and investigations by the author, the PhD project was conducted in four distinct stages that each resulted in novel outcomes. In the first stage, the author demonstrated gasochromic devices based on MoO 3 . MoO 3 was implemented due to its well-known chromic capabilities. The author developed a novel method to fabricate chromic devices based on selective electrodeposition of α- and β-MoO 3 . In the second stage, the author carried out a novel combination of anodised TiO 2 ordered nanotubular template and electrodeposited α-MoO 3 chromic interface as complimentary binary EC semiconducting materials in order to overcome the chromic limitations of each of these individual TMO. In the third stage, the author demonstrated EC devices based on ordered anodized Nb 2 O 5 , where a coloration efficiency (CE) value of 47.0 cm 2 C −1 was calculated. The calculated CE value was the highest in comparison to all other Nb 2 O 5 based EC devices at the time. In the final stage, to overcome the limitations Nb 2 O 5 , the author applied the concept of binary complimentary TMO system incorporating MoO 3 as the chromic layer while the ordered Nb 2 O 5 nanostructure functions as the template. In summary, the author believes that the outcomes of this PhD research provide an in-depth analysis of chromic devices based on TMOs including MoO 3 , TiO 2 , Nb 2 O 5 and their selected binary systems synthesised using electric field driven techniques. The author also believes that this study has contributed significantly towards improving TMO capabilities for chromic applications.
机译:根据定义,色差是导致材料发生颜色变化的过程,当可逆时,它通常对许多应用程序有利。诸如光调制器,智能窗户和光学显示器等许多现代应用都是基于变色效应的。总是通过兼容的刺激来辅助这种变色效应。在半导体中,特别是由薄膜制成的半导体中,通常是通过将正离子(例如Li +或H +)插入材料结构暴露的活性位中来引发着色的。半导体晶体的纳米结构合成不断扩展和发展。每种合成方法都具有影响形态,化学计量,结晶度,掺杂剂行为以及最终影响半导体晶体性能的独特前景。电场驱动的方法(例如阳极氧化和电沉积)尤其适用,因为它们通常是在环境条件下使用无毒电解质进行的。此外,阳极氧化和电沉积参数的操作很简单,这取决于在传送惊人结果的同时电压,电流和电解质等参数的变化。在本博士论文中,作者重点研究了沉积和操纵的过渡金属氧化物(TMO)的电场。目标TMO是三氧化钼(MoO 3),二氧化钛(TiO 2)和五氧化二铌(Nb 2 O 5),它们具有适用于铬器件的能带图和晶体结构。作者表明,使用上述两种技术可以将这些TMO合成为高表面积,高结晶度和均质的纳米结构。但是,这些潜在的候选材料还经历了固有的局限性,从而限制了它们的发色性能。因此,本文的作者打算寻求克服这些局限性的解决方案。为了实现该博士研究计划的目标,作者全面研究了纳米结构MoO 3,TiO 2和Nb 2 O 5的铬性能,并评估了它们的铬性能和增强它们的潜在策略。根据作者的策略和调查,博士项目分四个不同阶段进行,每个阶段都产生了新颖的成果。在第一阶段,作者演示了基于MoO 3的气致变色器件。 MoO 3的实现是由于其众所周知的变色功能。作者开发了一种基于选择性电沉积α-和β-MoO3的制造变色器件的新方法。在第二阶段,作者进行了阳极氧化的TiO 2有序纳米管模板和电沉积的α-MoO3铬界面作为互补二元EC半导体材料的新颖组合,以克服这些单独的TMO各自的铬限制。在第三阶段,作者演示了基于有序阳极氧化Nb 2 O 5的EC器件,其中计算出的着色效率(CE)值为47.0 cm 2 C -1。与当时所有其他基于Nb 2 O 5的EC器件相比,计算出的CE值最高。在最后阶段,为了克服Nb 2 O 5的局限性,作者应用了结合MoO 3作为铬层的二元互补TMO系统的概念,而有序Nb 2 O 5纳米结构作为模板。总而言之,作者认为,本博士研究的结果为基于TMO(包括MoO 3,TiO 2,Nb 2 O 5)及其使用电场驱动技术合成的选定二元体系的变色器件提供了深入的分析。作者还认为,这项研究对改善TMO在铬合金应用中的能力做出了重大贡献。

著录项

  • 作者

    Yao D;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号