首页> 外文OA文献 >Aircraft dynamics model augmentation for RPAS navigation and guidance
【2h】

Aircraft dynamics model augmentation for RPAS navigation and guidance

机译:Rpas导航和制导的飞机动力学模型增强

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, Aircraft Dynamics Model (ADM) augmentation for Remotely Piloted Aircraft System (RPAS) navigation and guidance is presented. This approach provides additional information suitable to compensate for the shortcomings of vision based navigation sensors and Micro-Electromechanical System Inertial Measurement Unit (MEMS-IMU) sensors for attitude determination tasks. The ADM virtual sensor is essentially a knowledge-based module and is used to augment the navigation state vector by predicting RPAS flight dynamics (aircraft trajectory and attitude motion). The ADM employs a rigid body 6-Degree of Freedom (6-DoF) model and is implemented in integrated multi-sensor data fusion architectures. The integration is accomplished with an Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). After introducing the key mathematical models describing the 6-DoF ADM, the sensor and integrated system performance are compared in a small RPAS integration scheme (i.e., AEROSONDE RPAS platform) exploring a representative cross-section of the aircraft operational flight envelope and a preliminary sensitivity analysis is performed. In addition to a centralised filter, a dedicated ADM processor (i.e., a local pre-filter) is adopted to account for the RPAS manoeuvring envelope in different flight phases, in order to extend the ADM validity time across all segments of the RPAS trajectory. Sensitivity analysis of the errors caused by perturbations in the input parameters of the aircraft dynamics is performed to demonstrate the robustness of the proposed approach. Results verify that the ADM virtual sensor provides improved performance in terms of attitude data accuracy and a significant extension of the ADM validity time is achieved by pre-filtering.
机译:在本文中,提出了用于远程驾驶飞机系统(RPAS)导航和制导的飞机动力学模型(ADM)增强。此方法提供了适合于补偿基于视觉的导航传感器和用于姿态确定任务的微机电系统惯性测量单元(MEMS-IMU)传感器的缺点的其他信息。 ADM虚拟传感器本质上是一个基于知识的模块,用于通过预测RPAS飞行动力学(飞机轨迹和姿态运动)来增强导航状态向量。 ADM采用刚性6自由度(6-DoF)模型,并在集成的多传感器数据融合架构中实现。集成是通过扩展卡尔曼滤波器(EKF)和无味卡尔曼滤波器(UKF)完成的。在介绍了描述6自由度ADM的关键数学模型之后,在小型RPAS集成方案(即AEROSONDE RPAS平台)中比较了传感器和集成系统的性能,探讨了飞机运行飞行包络线的代表性横截面和初步灵敏度进行分析。除了集中式滤波器之外,还采用了专用的ADM处理器(即本地预滤波器)来说明不同飞行阶段的RPAS机动包络,以便在RPAS轨迹的所有路段上延长ADM的有效时间。对飞机动力输入参数中的扰动引起的误差进行敏感性分析,以证明所提出方法的鲁棒性。结果证明,ADM虚拟传感器在姿态数据准确性方面提供了改进的性能,并且通过预过滤可以显着延长ADM的有效时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号