首页> 外文OA文献 >Flight controller design, automatic tuning and performance evaluation of quadrotor UAVs
【2h】

Flight controller design, automatic tuning and performance evaluation of quadrotor UAVs

机译:四旋翼无人机的飞行控制器设计,自动调谐和性能评估

摘要

For the last two decades, with the fast development of electronics, cheap and lightweight flight controllers, accelerometers, global positioning system and cameras have become readily available, which lead to a rapid growth of small commercial multi-rotor Unmanned Aerial Vehicles (UAV). The multi-rotor unmanned aerial vehicles are unstable systems due to their physical structures and feedback control systems underpin their operations and are paramount in the design and implementation of unmanned aerial vehicles. This thesis is dedicated to the topics of quadrotor controller design, automatic tuning and performance evaluation of their feedback control systems. Six key contributions are made in this research: (1) critical evaluation of conventional model-based quadrotor UAV controller design; (2) novel quadrotor PID control automatic tuning process with potential wide applications; (3) quadrotor control system performance assessment method via step response identification; (4) design and performance assessment of cascade and centralized quadrotor control using Model Predictive Control (MPC); (5) design and simulation of Quadrotor Discrete-Time One-step-ahead Predictive Control (DOPC) design; (6) design and implementation of two quadrotor UAV test rigs for validations of the proposed control strategies. In this thesis, a critical review of the conventional conventional modelbased quadrotor flight controller design is firstly conducted. Numerical simulations and experimental tests show the simplified integrator model and the neglected dynamics, which are commonly used in the conventional quadrotor controller design, can dramatically affect the closed-loop responses of the systems. The problems existed in the conventional modelbased PID controller design serve the motivation to develop the PID autotuner. The key idea behind the proposed auto-tuner is to fit the dominant dynamics of a physical plant into a simplified integrator plus delay model, which is then used to design the PID controller. The auto-tuner ensures a sound closed-loop control performance, without endangering the unmanned aerial vehicles and providing engineers and practitioners with reliable controller parameters. Another important issue for future quadrotor applications is how to reliably assess its closed-loop control performance and identify potential faults before flight. To address this problem, a novel approach to assess the closed-loop control performance of a quadrotor UAV is proposed in this thesis, which gives an intuitive way to more precisely evaluate the designed controllers and to obtain better controller tuning parameters. The auto-tuner and the proposed performance assessment scheme are evaluated on the self-made test rigs with final validations on flight tests. This thesis also covers the topic of quadrotor linear and nonlinear predictive control. For linear MPC, both centralized MPC and cascade MPC control architectures are designed for the quadrotor position controls. From the comparison, the advantages of cascade MPC over centralized MPC are highlighted. In addition to linear MPC, a novel optimization based discrete-time nonlinear predictive controller (DOPC) is developed. The main benefit of DOPC is to enable the quadrotor to fly with large Euler angles, so that it can make aggressive manurer and handle larger disturbance. Robustness analysis is conducted on the DOPC quadrotor control system.
机译:在过去的二十年中,随着电子技术的飞速发展,廉价,轻便的飞行控制器,加速计,全球定位系统和摄像头已经面市,这导致小型商用多旋翼无人机(UAV)的快速增长。多旋翼无人机由于其物理结构和反馈控制系统是其运行的基础,因此是不稳定的系统,在无人机的设计和实现中至关重要。本文致力于四旋翼控制器的设计,其反馈控制系统的自动调谐和性能评估。这项研究有六个主要贡献:(1)对传统的基于模型的四旋翼无人机控制器设计的严格评估; (2)新颖的四旋翼PID控制自动整定过程,具有广阔的应用前景; (3)通过阶跃响应辨识的四旋翼控制系统性能评估方法; (4)使用模型预测控制(MPC)进行级联和集中式四旋翼控制的设计和性能评估; (5)四旋翼离散时间单步提前预测控制(DOPC)设计与仿真; (6)设计和实施两个四旋翼无人机试验台,以验证所提出的控制策略。本文首先对传统的基于模型的四旋翼飞行控制器设计进行了严格的综述。数值模拟和实验测试表明,传统的四旋翼控制器设计中常用的简化积分器模型和被忽略的动力学会极大地影响系统的闭环响应。传统的基于模型的PID控制器设计中存在的问题有助于开发PID自动调谐器。拟议的自动调谐器背后的关键思想是将物理工厂的主要动态拟合为简化的积分器和延迟模型,然后将其用于设计PID控制器。自动调谐器可确保良好的闭环控制性能,而不会危害无人机,并为工程师和从业人员提供可靠的控制器参数。未来四旋翼飞机应用的另一个重要问题是如何可靠地评估其闭环控制性能并在飞行前确定潜在故障。为了解决这个问题,本文提出了一种评估四旋翼无人机的闭环控制性能的新方法,该方法为更精确地评​​估设计的控制器并获得更好的控制器调整参数提供了一种直观的方法。自动调谐器和拟议的性能评估方案在自制的测试设备上进行评估,并在飞行测试中进行最终验证。本文还涵盖了四转子线性和非线性预测控制的主题。对于线性MPC,集中式MPC和级联MPC控制架构均设计用于四旋翼位置控制。通过比较,突出了级联MPC相对于集中式MPC的优势。除了线性MPC,还开发了一种基于优化的新型离散时间非线性预测控制器(DOPC)。 DOPC的主要优点是使四旋翼飞行器能够以较大的欧拉角飞行,从而可以使激进的操纵器产生更大的干扰。在DOPC四旋翼控制系统上进行鲁棒性分析。

著录项

  • 作者

    Chen X;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号