首页> 外文OA文献 >Bi-directional evolutionary structural optimization (BESO) for topology optimization of material’s microstructure
【2h】

Bi-directional evolutionary structural optimization (BESO) for topology optimization of material’s microstructure

机译:用于材料微观结构拓扑优化的双向进化结构优化(BEsO)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is known that composite materials with improved properties can be achieved through modifications to the topology of their microstructures. Structural topology optimization approaches can be utilized as a systematic way for finding the best spatial distribution of constituent phases within the microstructures of materials/composites. This study presents a new approach for designing material’s microstructures based on the Bi-directional Evolutionary Structural Optimization (BESO) methodology. It is assumed that the materials/composites are composed of repeating microstructures known as periodic base cells (PBC). The goal is to find the best spatial distribution of constituent phases within the PBC, in such a way that materials with desired or improved functional properties are achieved. To this end, the Homogenization theory is applied to establish a relationship between properties of materials microstructure and their macroscopic characteristics. As the first step of this study, the optimization problem is formulated to find microstructures for materials with maximum stiffness, in the form of bulk or shear modulus, or thermal conductivity. Cellular materials, which are composed of one solid phase and one void phase, are considered at this stage. By conducting finite element analysis of the PBC, and applying the Homogenization theory, elemental sensitivity numbers are derived. By gradual removing and adding elements in an iterative process, the optimal topology of the solid phase within the PBC is found. In the next stage of this study, the aim is to combine additional performance constraint to the above procedure. Maximization of bulk or shear modulus is selected as the objective of the material design, subject to the constraint on the isotropy of material and volume constraint. The methodology is extended into topology optimization of microstructures for composites of two or more non-zero constituent phases. For design of material with maximum stiffness or thermal conductivity, the constituent phases are divided into groups and sensitivity analysis is performed between different groups. The developed methodology is also applied in designing functionally graded material (FGM), in which the mechanical property of material gradually changes. It is assumed that the microstructure of the FGM is composed of a series of cellular base cells in the direction of gradation and self-repeated in other directions. Finally, an approach is proposed for the topological design of FGMs with two non-zero constituent phases and multi graded properties. The objective of optimization is defined to find the stiffest materials with prescribed gradation of thermal conductivity. Similar to the approach used for cellular FGMs, the connectivity of base cells is maintained by considering three base cells at each stage. The effectiveness and computational efficiency of the proposed approaches are numerically tested, through designing a range of 2D and 3D microstructures for materials. A series of new and interesting microstructures of materials are presented. The results clearly indicate the advantages of BESO utilization in terms of computational costs and convergence speed, quality of generated microstructures, and ease of implementation as a post processing algorithm.
机译:已知可以通过改变其微结构的拓扑结构来获得具有改善的性能的复合材料。结构拓扑优化方法可以用作在材料/复合材料的微结构内找到组成相的最佳空间分布的系统方法。这项研究提出了一种基于双向演化结构优化(BESO)方法设计材料微观结构的新方法。假定材料/复合物由重复的微结构组成,这些微结构被称为周期性基础电池(PBC)。目的是在PBC中找到组成相的最佳空间分布,以实现具有所需或改进的功能特性的材料。为此,均质化理论被用于建立材料微观结构的性质与其宏观特性之间的关系。作为这项研究的第一步,制定了优化问题,以找到具有最大刚度的材料的微观结构,其形式为体积或剪切模量或导热系数。在这一阶段考虑由一种固相和一个空隙相组成的细胞材料。通过对PBC进行有限元分析并应用均质化理论,得出了元素敏感性数。通过在迭代过程中逐步删除和添加元素,可以找到PBC中固相的最佳拓扑。在本研究的下一阶段,目标是将其他性能约束条件与上述过程结合起来。选择体积或剪切模量的最大值作为材料设计的目标,但要考虑材料各向同性的约束和体积的约束。该方法扩展到微观结构的拓扑优化,以用于两个或多个非零组成相的复合材料。为了设计具有最大刚度或导热率的材料,将组成相分为几组,并在不同组之间进行灵敏度分析。所开发的方法还可以用于设计功能梯度材料(FGM),其中材料的机械性能会逐渐变化。假定FGM的微观结构由一系列细胞基础细胞组成,这些细胞在渐变方向上是自重复的,而在其他方向上是自重复的。最后,提出了一种具有两个非零组成相和多级性质的FGM的拓扑设计方法。确定优化的目的是找到具有规定导热系数等级的最硬材料。与用于蜂窝FGM的方法类似,通过在每个阶段考虑三个基本单元来维持基本单元的连接性。通过设计一系列材料的2D和3D微结构,对提出的方法的有效性和计算效率进行了数值测试。介绍了一系列新的有趣的材料微观结构。结果清楚地表明了BESO利用在计算成本和收敛速度,生成的微结构的质量以及易于实现为后处理算法方面的优势。

著录项

  • 作者

    Radman A;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号