首页> 外文OA文献 >Investigation of metal oxide nanostructured thin films based optical hydrogen sensors
【2h】

Investigation of metal oxide nanostructured thin films based optical hydrogen sensors

机译:金属氧化物纳米结构薄膜光学氢传感器的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this PhD research, novel metal oxide nanostructured thin film based optical H 2 sensors were developed and investigated. The nanotechnology enabled gas sensors had been reported to improve substantially their performance compared to the conventional sensors towards target analytes. Nevertheless, the previous investigations were mostly concentrated on the electrical based sensors and less focused on the optical based sensors. Therefore, the author embarked into this project to explore the sensing potential of the optical devices and comprehensively study a various kinds of metal oxide nanostructured thin films as the gas sensing layers. This was undertaken with the aspirations of enhancing the performance of the nanostructured thin film based optical sensors as compared to the conventional based sensors. To the best of author’s knowledge, the author developed several novel metal-oxide nanostructured based optical sensors with morphologies that have not been reported previously. The nanostructured materials under investigation are tungsten trioxide (WO 3 ), molybdenum trioxide (MoO 3 ), titanium dioxide (TiO 2 ) and nickel oxide (NiO). The developed optical gas sensors require a thin (≈25Å) catalytic metal layer such as palladium (Pd), platinum (Pt) or gold (Au) to dissociate the H 2 molecules into the nanostructured thin films. The gasochromic properties of these nanostructures were investigated towards H 2 with low concentration (&1%). Micro-nanocharacterisation techniques such as SEM, TEM, XPS, XRD, EDX, Raman and UV-vis-NIR spectroscopies were employed to obtain complete structural properties of the nanostructured materials in order to fundamentally understand their functionalities with respect to the optical sensors’ performance. In the case of sputtered WO 3 , the 500 nm films were deposited onto different transparent substrates consisting of quartz, glass, ITO and FTO conductive glasses to study the effect of the different WO 3 nanograin sizes on the H 2 sensing performance. The absorbance response increase of 110% was recorded for the Pd/sputtered WO 3 films with similar grain sizes (30 - 60 nm) on quartz, glass and ITO as compared to the small response (5% increase) for the films on FTO glass with large grains (300 – 500 nm) upon exposure to H 2 of 1% concentration. The H 2 sensing performance was also compared for the WO 3 films with different catalyst. Pd was proven to be highly efficient in improving the optical response as compared to Pt and Au. For the first time, the author successfully developed optical sensors based on Pd/MoO 3 nanorod films which are sensitive towards H 2 with low concentrations &1% at temperature below 120°C. The p-type metal oxide shows the opposite gasochromic properties than the n-type metal oxides which is proven by the Pd/400 nm p-type NiO nanostructured film reduced its absorbance upon H 2 exposure. It was found out that amongst the sensors investigated, the devices based on the Pd/WO 3 sputtered films and Pd/WO 3 nanoplatelet films produced the largest absorbance response compared to the other metal oxide nanostructured films by increasing the response to 110% and 99%, respectively, towards H 2 with 1% concentration. Finally, the author deposited the Pd/WO 3 sputtered films and Pd/WO 3 nanoplatelet films onto different optical transducing platforms such as optical fiber and channel waveguide.
机译:在这项博士研究中,开发并研究了基于新型金属氧化物纳米结构薄膜的光学H 2传感器。据报道,与传统传感器相比,采用纳米技术的气体传感器可显着改善其对目标分析物的性能。然而,先前的研究主要集中在基于电的传感器上,而较少集中在基于光学的传感器上。因此,作者开始了这个项目,以探索光学器件的传感潜力,并全面研究各种金属氧化物纳米结构薄膜作为气体传感层。出于与传统的基于传感器的传感器相比增强基于纳米结构的薄膜的光学传感器的性能的愿望而进行了这一工作。据作者所知,作者开发了几种新颖的基于金属氧化物纳米结构的光学传感器,这些传感器的形态以前没有报道过。正在研究的纳米结构材料是三氧化钨(WO 3),三氧化钼(MoO 3),二氧化钛(TiO 2)和氧化镍(NiO)。开发的光学气体传感器需要薄的(≈25Å)催化金属层,例如钯(Pd),铂(Pt)或金(Au)才能将H 2分子解离成纳米结构的薄膜。对低浓度(<1%)的H 2考察了这些纳米结构的气致变色性质。微纳米表征技术(例如SEM,TEM,XPS,XRD,EDX,拉曼光谱和紫外可见近红外光谱法)用于获得纳米结构材料的完整结构特性,以便从根本上了解其在光学传感器性能方面的功能。在溅射WO 3的情况下,将500 nm薄膜沉积到由石英,玻璃,ITO和FTO导电玻璃组成的不同透明基板上,以研究不同WO 3纳米颗粒尺寸对H 2传感性能的影响。在石英,玻璃和ITO上,具有相似晶粒尺寸(30-60 nm)的Pd /溅射WO 3膜的吸光度响应增加了110%,而FTO玻璃上的膜的吸光度响应则增加了5%(增加)暴露于浓度为1%的H 2时具有大晶粒(300 – 500 nm)。还比较了具有不同催化剂的WO 3膜的H 2感测性能。与Pt和Au相比,Pd被证明在改善光学响应方面非常有效。作者首次成功开发了基于Pd / MoO 3纳米棒薄膜的光学传感器,该薄膜对H 2敏感,在低于120°C的温度下浓度低于1%。 p型金属氧化物显示出与n型金属氧化物相反的气致变色特性,这已通过Pd / 400 nm p型NiO纳米结构膜降低了其在H 2暴露下的吸收率来证明。发现在所研究的传感器中,与其他金属氧化物纳米结构薄膜相比,基于Pd / WO 3溅射薄膜和Pd / WO 3纳米片薄膜的设备产生的吸光度响应最大,将其响应提高到110%和99分别向浓度为1%的H 2的1%。最后,作者将Pd / WO 3溅射膜和Pd / WO 3纳米片膜沉积在不同的光学转换平台上,例如光纤和通道波导。

著录项

  • 作者

    Yaacob M;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号