首页> 外文OA文献 >Topology optimisation of composites with base materials of distinct Poisson’s ratios
【2h】

Topology optimisation of composites with base materials of distinct Poisson’s ratios

机译:具有不同泊松比的基础材料的复合材料拓扑优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Structural topology optimization approaches help engineers to find the best layout or configuration of members in structural systems. However, these approaches differ in terms of computational costs and efficiency, quality of generated topologies, robustness, and the level of effort for implantation as a computational post-processing procedure. On the other hand, one common approach for saving resources is the application of porous or composite materials that have extreme or tailored properties. It is known that composite materials with improved properties can be designed by modifications into the topology of their microstructures. A systematic way for improving the properties of these types of materials consists of application of a structural topology optimization approach to find the best spatial distribution of materials within the microstructures of composites. This study presents new approaches for design of microstructures for materials based on the bidirectional evolutionary structural optimization (BESO) methodology. It is assumed that the materials are composed of repeating microstructures known as periodic base cells (PBC). The goal is to apply the BESO topology optimization to find the best spatial distribution of constituent phases within the PBC in such a way that materials with desired or improved functional properties are achieved. To this end, the homogenization theory is applied to establish a relationship between material properties in microstructural and macrostructural length scales. In the first stage of this study, the optimization problem is formulated to find microstructures for composites of prescribed volume constrains with maximum effective Young's moduli. It is assumed that the base materials are composed of two materials with different Poisson’s ratios. By performing finite element analysis on the PBC and applying the homogenization theory, an elemental sensitivity analysis is conducted. Following by removing and adding elements gradually in an iterative process according to their sensitivity ranking, the optimal topology for the PBC can be generated. The effectiveness and computational efficiency of the proposed approach is numerically exemplified through a range of 3D topology optimization problems. In the next stage of this study, the optimization problem is formulated to find microstructures for composites of prescribed volume constrains with maximum stiffness in the form of bulk or shear modulus. Here the composites possess two constituent phases. Compared with cellular materials whose microstructures are made of a solid phase and a void phase, composites of two different material phases are more advantageous since they can provide a wider range of performance characteristics. Maximization of bulk or shear modulus subject to a volumetric constraint is selected as the objective of the material design. Adding and removing of elements is performed based on the ranking of sensitivity numbers and imposed volumetric constraint between different base materials. The proposed procedure demonstrates very stable convergence without any numerical difficulty. The computational efficiency of the proposed approach has been demonstrated by numerical examples. A series of new and interesting microstructures of two base materials are presented. The other major advantage of the BESO in design of composites of two base materials is the distinctive interfaces between constituent phases in the generated microstructures, which make the manufacturing of microstructures viable. The methodology has the capability to be extended for material optimization with other objective or constraint functions.
机译:结构拓扑优化方法可帮助工程师找到结构系统中构件的最佳布局或配置。但是,这些方法在计算成本和效率,生成的拓扑的质量,鲁棒性以及作为计算后处理程序的植入工作量方面存在差异。另一方面,一种节省资源的常用方法是应用具有极端或定制性能的多孔或复合材料。众所周知,可以通过修改其微观结构的拓扑来设计具有改进性能的复合材料。改善这些类型材料性能的系统方法包括应用结构拓扑优化方法,以在复合材料的微结构内找到材料的最佳空间分布。这项研究提出了基于双向进化结构优化(BESO)方法的材料微结构设计的新方法。假定材料由重复的微结构组成,称为周期基本单元(PBC)。目的是应用BESO拓扑优化来找到PBC内各组成相的最佳空间分布,从而获得具有所需或改进的功能特性的材料。为此,均质化理论被用于建立微观结构和宏观结构长度尺度中材料特性之间的关系。在这项研究的第一阶段,制定了优化问题,以找到具有最大有效杨氏模量的规定体积约束的复合材料的微观结构。假定基础材料由具有不同泊松比的两种材料组成。通过对PBC进行有限元分析并应用均质化理论,进行了元素敏感性分析。通过根据其敏感度等级在迭代过程中逐渐删除和添加元素,可以生成PBC的最佳拓扑。通过一系列3D拓扑优化问题,以数字方式说明了该方法的有效性和计算效率。在本研究的下一阶段,制定了优化问题,以找到规定体积约束的复合材料的微观结构,该复合材料具有最大刚度(以体积或剪切模量形式)。在此,复合物具有两个组成相。与微观结构由固相和空隙相组成的多孔材料相比,两种不同材料相的复合材料更具优势,因为它们可以提供更广泛的性能特征。选择受体积约束的体积模量或剪切模量最大化作为材料设计的目标。元素的添加和删除是基于敏感性数的排名和不同基础材料之间施加的体积约束进行的。所提出的过程证明了非常稳定的收敛性,没有任何数值上的困难。数值算例证明了该方法的计算效率。介绍了两种基础材料的一系列新颖有趣的微观结构。 BESO在设计两种基础材料的复合材料时的另一个主要优点是,生成的微结构中各组成相之间的独特界面,使微结构的制造成为可行。该方法具有使用其他目标或约束功能进行材料优化的扩展能力。

著录项

  • 作者

    Du X;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号