The effectiveness of adaptive space-meshing in the solution of one-dimensional parabolic partial differential equations (PDEs) is assessed.ududPresent day PDE software typically involves discretisation in space (using Finite Differences or Finite Elements) to produce a system of ordinary differential equations (ODEs) which is then solved routinely using currently available high quality ODE integrators. Such approaches do not attempt to control the errors in the spatial discretisation and th e task of ensuring an effective spatial approxim ation and num erical grid are left entirely to the user. Numerical experiments with Burgers’ equation demonstrate the inadequacies of this approach and suggest the need foradaptive spatial m eshing as the problem evolves. The currently used adaptive m eshing techniques for parabolic problems are reviewed and two effective strategies are selected for study. Numerical experim ents dem onstrate their effectiveness in term s of reduced com putational overhead and increased accuracy. From these experiences possible future trends in adaptive meshing can be identified.
展开▼
机译:评估了一维抛物线偏微分方程(PDE)解决方案中自适应空间网格划分的有效性。 ud ud目前的PDE软件通常涉及空间离散化(使用有限差分或有限元素)以生成普通系统微分方程(ODE),然后使用当前可用的高质量ODE积分器进行常规求解。这样的方法并不试图控制空间离散化中的误差,并且确保有效的空间近似和数字网格的任务完全留给用户。使用Burgers方程进行的数值实验证明了这种方法的不足,并建议随着问题的发展,需要自适应的网格划分。对抛物线问题目前使用的自适应网格技术进行了综述,并选择了两种有效的策略进行研究。数值实验证明了其在减少计算开销和提高准确性方面的有效性。从这些经验中,可以确定自适应网格化的未来趋势。
展开▼