首页> 外文OA文献 >Joint Geo-Spatial Preference and Pairwise Ranking for Point-of-Interest Recommendation
【2h】

Joint Geo-Spatial Preference and Pairwise Ranking for Point-of-Interest Recommendation

机译:兴趣点推荐的联合地理空间偏好和成对排序

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recommending users with preferred point-of-interests (POIs) has become an important task for location-based social networks, which facilitates users' urban exploration by helping them filter out unattractive locations. Although the influence of geographical neighborhood has been studied in the rating prediction task (i.e. regression), few work have exploited it to develop a ranking-oriented objective function to improve top-N item recommendations. To solve this task, we conduct a manual inspection on real-world datasets, and find that each individual's traits are likely to cluster around multiple centers. Hence, we propose a co-pairwise ranking model based on the assumption that users prefer to assign higher ranks to the POIs near previously rated ones. The proposed method can learn preference ordering from non-observed rating pairs, and thus can alleviate the sparsity problem of matrix factorization. Evaluation on two publicly available datasets shows that our method performs significantly better than state-of-the-art techniques for the top-N item recommendation task.
机译:向用户推荐首选兴趣点(POI)已成为基于位置的社交网络的一项重要任务,该社交网络通过帮助用户过滤出没有吸引力的位置来促进用户的城市探索。尽管已在评分预测任务(即回归)中研究了地理邻域的影响,但很少有工作可以利用它来开发面向排名的目标函数以改进前N个项目的建议。为了解决此任务,我们对现实世界的数据集进行了手动检查,发现每个人的特征都可能聚集在多个中心附近。因此,我们基于用户偏爱将较高等级分配给先前评分等级附近的POI的假设,提出了按对数排名的模型。所提出的方法可以从未观察到的评级对中学习偏好排序,从而减轻矩阵分解的稀疏性问题。对两个公开可用的数据集的评估表明,对于前N个项目推荐任务,我们的方法的性能明显优于最新技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号