首页> 外文期刊>Journal of computational science >Next point-of-interest recommendation via a category-aware Listwise Bayesian Personalized Ranking
【24h】

Next point-of-interest recommendation via a category-aware Listwise Bayesian Personalized Ranking

机译:通过类别感知的Listwise贝叶斯个性化排名进行下一个兴趣点推荐

获取原文
获取原文并翻译 | 示例

摘要

In recent years, location-based social networks (LBSNs) have attracted much attention, and next point of-interest (POI) recommendation has become an important task for LBSNs. However, previous efforts suffer from the high computational complexity, besides the transition pattern between POIs has not been well studied. In this paper, we proposed a two-fold approach for next POI recommendation. First, we predict the next category by using a third-rank tensor optimized by a Listwise Bayesian Personalized Ranking (LBPR) approach. Specifically, we introduce two functions, namely Plackett-Luce model and cross entropy, to generate the likelihood of a ranking list for posterior computation. The optimization criteria of LBPR are derived from a perspective of Bayesian analysis for ranking problems, and we formulate the listwise loss functions by two probability model. Then POI candidates filtered by the predicated category are ranked based on the spatial influence and category ranking influence. By explicit usage of category information to infer the user transition pattern in category-level, the proposed models are ideally better with the next new POI recommendation problem. The experiments on two real-world datasets demonstrate the significant improvements of our methods over several state-of-the-art methods. (C) 2017 Elsevier B.V. All rights reserved.
机译:近年来,基于位置的社交网络(LBSN)引起了很多关注,而下一个兴趣点(POI)推荐已成为LBSN的重要任务。然而,除了尚未对POI之间的过渡模式进行很好的研究之外,先前的努力还具有较高的计算复杂度。在本文中,我们为下一个POI推荐提出了两种方法。首先,我们使用通过Listwise贝叶斯个性化排名(LBPR)方法优化的第三张量来预测下一个类别。具体来说,我们引入两个函数,即Plackett-Luce模型和交叉熵,以生成用于后验计算的排名列表的可能性。 LBPR的优化标准是从贝叶斯排序问题的角度出发得出的,并通过两个概率模型来建立列表损失函数。然后,根据空间影响力和类别排名影响力对通过谓词类别过滤的POI候选进行排名。通过显式使用类别信息来推断类别级别的用户转换模式,建议的模型在下一个新的POI推荐问题上会更好。在两个真实世界的数据集上进行的实验证明了我们的方法相对于几种最新方法的显着改进。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号