首页> 外文OA文献 >High-current inductors for high-power automotive DC-DC converters
【2h】

High-current inductors for high-power automotive DC-DC converters

机译:用于大功率汽车DC-DC转换器的大电流电感器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis is focused on the investigation of magnetic materials for high-power dcdc converters in hybrid and fuel cell vehicles and the development of an optimized high-power inductor for a multi-phase converter. The thesis introduces the power system architectures for hybrid and fuel cell vehicles. The requirements for power electronic converters are established and the dc-dc converter topologies of interest are introduced. A compact and efficient inductor is critical to reduce the overall cost, weight and volume of the dc-dc converter and optimize vehicle driving range and traction power. Firstly, materials suitable for a gapped CC-core inductor are analyzed and investigated. A novel inductor-design algorithm is developed and automated in order to compare and contrast the various magnetic materials over a range of frequencies and ripple ratios. The algorithm is developed for foil-wound inductors with gapped CC-cores in the low (10 kHz) to medium (30 kHz) frequency range and investigates the materials in a natural-convection-cooled environment. The practical effects of frequency, ripple, air-gap fringing, and thermal configuration are investigated next for the iron-based amorphous metal and 6.5 % silicon steel materials. A 2.5 kW converter is built to verify the optimum material selection and thermal configuration over the frequency range and ripple ratios of interest. Inductor size can increase in both of these laminated materials due to increased airgap fringing losses. Distributing the airgap is demonstrated to reduce the inductor losses and size but has practical limitations for iron-based amorphous metal cores. The effects of the manufacturing process are shown to degrade the iron-based amorphous metal multi-cut core loss. The experimental results also suggest that gap loss is not a significant consideration in these experiments. The predicted losses by the equation developed by Reuben Lee and cited by Colonel McLyman are significantly higher than the experimental results suggest. Iron-based amorphous metal has better preformance than 6.5 % silicon steel when a single cut core and natural-convection-cooling are used. Conduction cooling, rather than natural convection, can result in the highest power density inductor. The cooling for these laminated materials is very dependent on the direction of the lamination and the component mounting. Experimental results are produced showing the effects of lamination direction on the cooling path. A significant temperature reduction is demonstrated for conduction cooling versus natural-convection cooling. Iron-based amorphous metal and 6.5% silicon steel are competitive materials when conduction cooled. A novel inductor design algorithm is developed for foil-wound inductors with gapped CC-cores for conduction cooling of core and copper. Again, conduction cooling, rather than natural convection, is shown to reduce the size and weight of the inductor. The weight of the 6.5 % silicon steel inductor is reduced by around a factor of ten compared to natural-convection cooling due to the high thermal conductivity of the material. The conduction cooling algorithm is used to develop high-power custom inductors for use in a high power multi-phase boost converter. Finally, a high power digitally-controlled multi-phase boost converter system is designed and constructed to test the high-power inductors. The performance of the inductors is compared to the predictions used in the design process and very good correlation is achieved. The thesis results have been documented at IEEE APEC, PESC and IAS conferences in 2007 and at the IEEE EPE conference in 2008.
机译:本文主要研究混合动力和燃料电池汽车中用于大功率dcdc转换器的磁性材料,并开发用于多相转换器的优化的大功率电感器。本文介绍了混合动力和燃料电池汽车的动力系统架构。建立了对电力电子转换器的要求,并介绍了感兴趣的DC-DC转换器拓扑。紧凑高效的电感器对于降低DC-DC转换器的整体成本,重量和体积以及优化车辆行驶范围和牵引功率至关重要。首先,分析和研究了适用于带间隙CC芯电感的材料。开发了一种新颖的电感器设计算法并使其自动化,以便在一定频率和纹波比范围内比较和对比各种磁性材料。该算法是针对在低(10 kHz)到中(30 kHz)频率范围内具有间隙CC芯的箔绕电感器开发的,并研究了自然对流冷却环境中的材料。接下来,研究铁基非晶态金属和6.5%硅钢材料的频率,纹波,气隙边缘和热结构的实际影响。内置一个2.5 kW的转换器,以验证所关注的频率范围和纹波比下的最佳材料选择和热配置。由于气隙边缘损耗的增加,这两种层压材料的电感器尺寸都会增加。事实证明,分布气隙可减少电感器的损耗和尺寸,但对铁基非晶态金属芯具有实际限制。结果表明,制造工艺的影响会降低铁基非晶态金属多芯损耗。实验结果还表明,间隙损失不是这些实验中的重要考虑因素。由Reuben Lee开发并由McLyman上校引用的方程式预测的损失明显高于实验结果。当使用单切芯和自然对流冷却时,铁基非晶态金属的性能优于6.5%的硅钢。传导冷却而非自然对流会导致电感的功率密度最高。这些层压材料的冷却非常依赖于层压方向和组件安装。实验结果表明层压方向对冷却路径的影响。与自然对流冷却相比,传导冷却显示出明显的温度降低。当进行传导冷却时,铁基非晶态金属和6.5%的硅钢是竞争性材料。针对带间隙CC芯的箔绕式电感器,开发了一种新颖的电感器设计算法,用于铁芯和铜的传导冷却。再次,传导冷却而不是自然对流被显示为减小电感器的尺寸和重量。与自然对流冷却相比,由于材料的高导热性,6.5%硅钢电感器的重量减少了大约十倍。传导冷却算法用于开发用于大功率多相升压转换器的大功率定制电感器。最后,设计并构建了一个大功率数控多相升压转换器系统,以测试大功率电感器。将电感器的性能与设计过程中使用的预测进行比较,可以实现很好的相关性。论文结果已在2007年的IEEE APEC,PESC和IAS会议以及2008年的IEEE EPE会议上得到了记录。

著录项

  • 作者

    Lyons Brendan;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号