首页> 外文OA文献 >Mathematical optimisation of diver ascent profiles at a constant risk of decompression illness
【2h】

Mathematical optimisation of diver ascent profiles at a constant risk of decompression illness

机译:在减压病持续风险中的潜水员上升曲线的数学优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Divers use decompression schedules that provide a stepped ascent to the surfacefrom their maximum depth to help prevent the occurrence of decompression illness.The risk of decompression illness resulting from these schedules varies acrossdifferent dives and the models used to generate them. The diver is unaware of thisvariance in risk.This thesis describes an investigation into the feasibility of producing optimised isoprobabilisticdecompression schedules that minimise the time it takes for the diver toreach the surface from maximum depth. In particular, 1.3 bar constant partialpressure of oxygen in helium dives are considered. The US Linear ExponentialMulti-gas (LEM) model is used to describe the risk of decompression illness for agiven dive. The Sequential Quadratic Programming (SQP) method is used tominimise the ascent time given non-linear risk constraints and a maximum dive timeconstraint.Two approaches to describing the ascent profile have been investigated. The firstscheme finds the stop times at each possible stop depth to produce optimisedschedules. The total time for decompression is a function of the sum of the stoptimes. The second scheme defines the ascent profile as a three parameter hyperbolictangent equation. The SQP method finds the three parameters that produce optimiseddecompression schedules once the curve is converted to a schedule of decompressionstops.The schedules produced by the SQP method, using a curve to describe the ascentprofile, show that it is feasible to produce optimised iso-probabilistic tables that areoperationally practical given an acceptable physiological risk model. Comparisonwith the QinetiQ 90 tables with a nominal 2% operational risk of decompressionillness show that the method could provide reductions in the ascent time subject tomanned testing.
机译:潜水员使用减压计划,可从最大深度开始逐步上升至水面,以防止发生减压病。不同潜水计划和生成潜水表的模型所产生的减压病风险有所不同。潜水员没有意识到这种风险差异。本文描述了对制定优化的等概率减压计划的可行性的研究,该计划可最大程度地减少潜水员从最大深度到达水面所需的时间。特别是在氦气潜水中,氧气的恒定分压为1.3 bar。美国线性指数多气体(LEM)模型用于描述潜水后减压病的风险。在给出非线性风险约束和最大潜水时间约束的情况下,采用序列二次规划(SQP)方法来最小化上升时间。研究了两种描述上升曲线的方法。第一个方案在每个可能的停止深度处找到停止时间,以产生最佳计划。减压的总时间是停止时间总和的函数。第二种方案将上升曲线定义为三参数双曲正切方程。一旦将曲线转换为减压停止时间表,SQP方法会找到产生最佳减压时间表的三个参数.SQP方法生成的时间表使用曲线描述上升曲线,表明生成优化的等概率表是可行的给定可接受的生理风险模型,在操作上是可行的。与QinetiQ 90减压表(标称减压度为2%)的比较表明,该方法可以减少经过人工测试的上升时间。

著录项

  • 作者

    Horn B. J.;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号