首页> 外文OA文献 >Scalable FPGA accelerator of the NRM algorithm for efficient stochastic simulation of large-scale biochemical reaction networks
【2h】

Scalable FPGA accelerator of the NRM algorithm for efficient stochastic simulation of large-scale biochemical reaction networks

机译:NRm算法的可扩展FpGa加速器,用于大规模生化反应网络的有效随机模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Stochastic simulation of large-scale biochemical reaction networks, with thousands of reactions, is important for systems biology and medicine since it will enable the insilico experimentation with genome-scale reconstructed networks. FPGA based stochastic simulation accelerators can exploit parallelism, but have been limited on the size of biomodels they can handle. We present a high performance scalable System on Chip architecture for implementing Gibson and Bruck's Next Reaction Method efficiently in reconfigurable hardware. Our MPSoC uses aggressive pipelining at the core level and also combines many cores into a Network on Chip to also execute in parallel stochastic repetitions of complex biomodels, each one with up to 4K reactions. The performance of our NRM core depends only on the average outdegree of the biomodel's Dependencies Graph (DG) and not on the number of DG nodes (reactions). By adding cores to the NoC, the system's performance scales linearly and reaches GCycles/sec levels. We show that a medium size FPGA running at ~200 MHz deliver high speedup gains relative to a popular and efficient software simulator running on a very powerful workstation PC.
机译:具有成千上万个反应的大规模生化反应网络的随机模拟对于系统生物学和医学非常重要,因为这将使利用基因组规模的重建网络进行计算机模拟实验成为可能。基于FPGA的随机仿真加速器可以利用并行性,但是在它们可以处理的生物模型的大小上受到限制。我们提出了一种高性能,可扩展的片上系统架构,用于在可重新配置的硬件中有效地实现Gibson和Bruck的Next Reaction方法。我们的MPSoC在核心级别使用了积极的流水线技术,还将许多核心组合到了片上网络中,还可以并行随机地执行复杂生物模型的随机重复,每个重复具有多达4K的反应。我们的NRM核心的性能仅取决于生物模型的依赖关系图(DG)的平均程度,而不取决于DG节点(反应)的数量。通过向NoC添加内核,系统的性能可以线性扩展并达到GCycles / sec水平。我们证明,相对于在功能强大的工作站PC上运行的流行且高效的软件模拟器,运行在〜200 MHz的中型FPGA可以提供较高的加速增益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号