首页> 外文OA文献 >Recovery-driven design: Exploiting error resilience in design of energy-efficient processors
【2h】

Recovery-driven design: Exploiting error resilience in design of energy-efficient processors

机译:恢复驱动设计:利用节能处理器设计中的错误恢复能力

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Conventional CAD methodologies optimize a processor module for correct operation and prohibit timing violations during nominal operation. We propose recovery-driven design, a design approach that optimizes a processor module for a target timing error rate instead of correct operation. The target error rate is chosen based on how many errors can be gainfully tolerated by a hardware or software error resilience mechanism. We show that significant power bene ts are possible from a recovery-driven design approach that deliberately allows errors caused by voltage overscaling to occur during nominal operation, while relying on an error resilience technique to tolerate these errors. We present a detailed evaluation and analysis of such a design-level methodology that minimizes the power of a processor module for a targeterror rate. We show how this design-level methodology can be extended to design recovery-driven processors -- processors that are optimized to take advantage of hardware or software error resilience. These may be single-core processors or heterogeneously-reliable multi-core processors, in which individual cores are optimized for different reliability targets. We also discuss a gradual slack recovery-driven design approach that optimizes for a rangeof error rates to create soft processors -- processors that have graceful failure characteristics and the ability to trade throughput or output quality for additional energy savings over a range of error rates. We demonstrate significant power benefits over conventional design -- 11.8% on average over all modules and error rate targets, and up to 29.1% for individual modules. Processor-level benefits are 19.0%, on average. Benefits increase when recovery-driven design is coupled with an error resilience mechanism or when the number of available voltage domains increases.
机译:常规的CAD方法会优化处理器模块以确保正确运行,并在正常运行期间禁止时序违规。我们提出了恢复驱动设计,该设计方法针对目标时序错误率而不是正确操作来优化处理器模块。根据硬件或软件错误恢复机制可以容忍多少错误来选择目标错误率。我们表明,恢复驱动设计方法有可能带来重大的功率收益,该方法故意允许由电压超标引起的误差在标称工作期间发生,同时依靠容错技术来容忍这些误差。我们对这种设计级别的方法进行了详细的评估和分析,该方法可将针对目标错误率的处理器模块的功耗降至最低。我们展示了如何将此设计级别的方法扩展到设计恢复驱动的处理器-经过优化以利用硬件或软件错误复原能力的处理器。这些可能是单核处理器或异构可靠的多核处理器,其中针对不同的可靠性目标对单个核进行了优化。我们还将讨论逐步恢复驱动的松弛设计方法,该方法可针对一定范围的错误率进行优化以创建软处理器-软处理器具有优美的故障特性,并且能够通过吞吐量或输出质量进行交易以在一系列错误率范围内进一步节省能源。与传统设计相比,我们证明了其显着的功耗优势-所有模块和错误率目标的平均值平均为11.8%,单个模块的平均值高达29.1%。处理器级别的收益平均为19.0%。当恢复驱动的设计与错误恢复机制结合使用时,或者当可用电压域的数量增加时,收益会增加。

著录项

  • 作者

    Sartori John M.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号