首页> 外文OA文献 >A multi-scale generalized finite element method for sharp, transient thermal gradients
【2h】

A multi-scale generalized finite element method for sharp, transient thermal gradients

机译:一种用于尖锐瞬态热梯度的多尺度广义有限元方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this research, heat transfer problems exhibiting sharp thermal gradients are analyzed using the generalized finite element method. Convergence studies show that low order (linear and quadratic) elements require strongly refined meshes for acceptable accuracy. The high meshdensity leads to small allowable time-step sizes, and significant increase in the computational cost. When mesh refinement and unrefinementis required between time-steps the mapping of solution vectors and state-dependent variables becomes difficult. A generalized FEM with global-local enrichments is proposed for the class of problems investigated in this research. In this procedure, a global solution space defined on a coarse mesh is enriched through the partition of unity framework of the generalized FEM with solutions of local boundary value problems. The local problems are defined using the same procedure as in the global-local FEM, where boundary conditions are provided by a coarse-scale global solution. Coarse, uniform, global meshes are acceptable even at regions with thermal spikes that are orders of magnitude smaller than the element size. Convergence on these discretizations is achieved even when no or limited convergence is observed in the local problems. The two-way information transfer provided by the proposed generalized FEM is appealing to several classes of problems, especially those involving multiple spatial scales. The proposed methodology brings the benefits of generalized FEM to problems where limited or no information about the solution is known a-priori. The proposed methodology is formulated for, and applied to transient problems, where local domains at time t^{n+1} obtain their boundary conditions from the global domain at t^{n}. No transient effects need to be considered in the local domain. The method has shown the ability to produce accurate and efficient transient simulations in situations where traditional FEM analyses would lead to difficult re-meshing, and solution mapping issues. With the proposed methodology, the enrichment functions are added hierarchically to the stiffness matrix. As such, large portions of the coarse, global meshes may be assembled and factorized only once. The factorizations can then be re-used for multiple loading scenarios, or multiple time-steps so as to significantly improve the computational efficiency of the simulations. The issue of prohibitively small time-step sizes dictated by high mesh density in traditional FEM analyses is also addressed. With the use of appropriate shape functions, sufficient accuracy is obtained without the requirement of highly refined meshes. The resulting critical time-steps are less restrictive, making transient analyses more computationally feasible.
机译:在这项研究中,使用广义有限元方法分析了表现出急剧的热梯度的传热问题。收敛性研究表明,低阶(线性和二次)元素需要严格精炼的网格才能达到可接受的精度。高网格密度导致较小的可允许时间步长,并显着增加了计算成本。当在时间步长之间需要网格细化和不细化时,解向量和状态相关变量的映射变得困难。针对本研究中所研究的问题类别,提出了一种具有全局局部富集的广义有限元法。在此过程中,通过划分广义FEM的统一框架与局部边值问题的解决方案,丰富了在粗网格上定义的全局解空间。局部问题是使用与全局局部FEM中相同的过程定义的,其中边界条件由粗略全局解决方案提供。即使在热峰值比单元尺寸小几个数量级的区域,也可以使用粗大,均匀的全局网格。即使在局部问题中未观察到或有限的收敛,也可以实现这些离散的收敛。提议的广义有限元法提供的双向信息传递吸引了几类问题,尤其是涉及多个空间尺度的问题。所提出的方法将广义有限元法的好处带到了已知的解决方案信息有限或根本没有的问题中。拟议的方法论针对瞬态问题制定,并应用于瞬态问题,其中在时间t ^ {n + 1}的局部域从全局域t ^ {n}获得其边界条件。在本地域中无需考虑瞬态效应。该方法显示了在传统FEM分析会导致难以重新划分网格和解决方案映射问题的情况下,能够产生准确而有效的瞬态仿真的能力。利用所提出的方法,富集函数被分层地添加到刚度矩阵。这样,大部分粗的整体网格可以仅被组装和分解一次。然后可以将分解分解用于多个加载方案或多个时间步,以显着提高模拟的计算效率。还解决了传统FEM分析中由高网格密度指示的时间步长过小的问题。通过使用适当的形状函数,无需高度精炼的网格即可获得足够的精度。产生的关键时间步长限制较少,从而使瞬态分析在计算上更加可行。

著录项

  • 作者

    OHara Patrick J.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号