首页> 外文OA文献 >Filtering and refinement: a two-stage approach for efficient and effective anomaly detection
【2h】

Filtering and refinement: a two-stage approach for efficient and effective anomaly detection

机译:过滤和细化:用于高效和有效异常检测的两阶段方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Anomaly detection is an important data mining task. Most existing methods treat anomalies as inconsistencies and spend the majority amount of time on modeling normal instances. A recently proposed, sampling-based approach may substantially boost the efficiency in anomaly detection but may lead to weaker accuracy and robustness. In this study, we propose a two-stage approach to find anomalies in complex datasets with high accuracy as well as low time complexity and space cost. Instead of analyzing normal instances, our algorithm first employs an efficient deterministic space partition algorithm to eliminate obvious normal instances and generates a small set of anomaly candidates with a single scan of the dataset. It then checks each candidate with density-based multiple criteria to determine the final results. This two-stage framework also detects anomalies of different notions. Our experiments show that this new approach finds anomalies successfully in different conditions and ensures a good balance of efficiency, accuracy, and robustness.
机译:异常检测是一项重要的数据挖掘任务。大多数现有方法将异常视为不一致,并花费大量时间在建模正常实例上。最近提出的基于采样的方法可能会大大提高异常检测的效率,但可能导致精度和健壮性变弱。在这项研究中,我们提出了一种两阶段方法来以高准确度,低时间复杂度和空间成本在复杂数据集中查找异常。代替分析正常实例,我们的算法首先采用一种有效的确定性空间划分算法来消除明显的正常实例,并通过对数据集的一次扫描生成少量异常候选集。然后,它使用基于密度的多个标准检查每个候选者,以确定最终结果。这个两阶段的框架还可以检测不同概念的异常。我们的实验表明,这种新方法可以在不同条件下成功发现异常,并确保效率,准确性和鲁棒性之间的良好平衡。

著录项

  • 作者

    Yu Xiao;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号