首页> 外文OA文献 >Mobile malware anomaly-based detection systems using static analysis features / Ahmad Firdaus Zainal Abidin
【2h】

Mobile malware anomaly-based detection systems using static analysis features / Ahmad Firdaus Zainal Abidin

机译:使用静态分析功能的移动恶意软件异常检测系统/ ahmad Firdaus Zainal abidin

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Presently, the rise of demand for Android gadget motivates the unscrupulous author to develop malware to compromise mobile devices for malicious and private purposes. The categories of mobile malware types are root exploit, botnet, and Trojan. Consequently, in order to classify an application either malware or benign, security practitioners conduct two types of analysis, namely dynamic and static. Dynamic analysis classifies an application as malware by executing it and monitors the behavior. However, it demands high computing requirements and monitors in a limited range of time. On the other hand, static analysis reverses engineer an application and examine overall code thoroughly, therefore further capable of examining the whole structure of the application. Furthermore, static analysis consumes low resources (for instance, CPU, memory, storage) and less time processing. As static analysis concentrates on the code, security practitioners face challenges to select the best features among thousand lines of it. Although they suggest several features, however, there are still provides many features available to be explored. Furthermore, less attention has been given to root exploit features specifically. It is one of the critical malware which compromises operating system kernel to obtain root privileges. When the attackers obtain the privileges, they are able to bypass security mechanisms and install other possible types of malware to the devices. Moreover, in order to achieve an efficient malware prediction in machine learning, it needs features in a minimal amount to enhance accuracy with fewer data, less time processing and reduces model complexity. Therefore, to achieve the aim of finding the best and minimal features to detect malware with root exploit, this study adopts bio-inspired Genetic Search (GS), conveys the range ivudof repeated features in similar application, and investigates root exploit to gain the best features to predict unknown malware using machine learning. The features categories involved in all these experiments are the permission, directory path, code-based, system command, and telephony. In detecting root exploit, the category involved is the novel features called Android Debug Bridge (ADB). By obtaining the best features derived from these experiments, this study applies it in machine learning to predict unknown malware. To demonstrate the results, this experiment evaluated six benchmarks (for instance, accuracy, True Positive Rate (TPR), False Positive Rate (FPR), recall, precision, and f-measure) to test the prediction and performance. From the outstanding results being collected, a website was established to validate the unique static features with machine learning mechanism to investigate its efficiency and practicality. Through the outcomes assembled, this research has verified that the unique static features capable of predicting unknown malware together with root exploit. The contributions of this study were investigated, selected, proposed, designed and evaluated the best features in detecting malware by using static analysis.
机译:当前,对Android小工具的需求的增长促使不道德的作者开发恶意软件,以出于恶意和私人目的破坏移动设备。移动恶意软件类型的类别为root exploit,botnet和Trojan。因此,为了对恶意软件或良性应用程序进行分类,安全从业人员会进行两种类型的分析,即动态分析和静态分析。动态分析通过执行应用程序将其分类为恶意软件并监视其行为。但是,它要求很高的计算要求,并且需要在有限的时间范围内进行监控。另一方面,静态分析使应用程序逆向工程并彻底检查整个代码,因此进一步能够检查应用程序的整体结构。此外,静态分析消耗的资源较少(例如,CPU,内存,存储),并且处理时间更少。当静态分析集中在代码上时,安全从业人员面临挑战,需要从代码的数千行中选择最佳功能。尽管它们建议了几个功能,但是仍然提供了许多可供探索的功能。此外,对根漏洞利用功能的关注较少。它是危及操作系统内核以获得root用户特权的重要恶意软件之一。攻击者获得特权后,便能够绕过安全机制,并向设备安装其他可能类型的恶意软件。此外,为了在机器学习中实现有效的恶意软件预测,它需要使用最少的功能来以更少的数据,更少的时间处理并降低模型复杂性来提高准确性。因此,为了达到寻找最佳和最小特征以利用根漏洞进行恶意软件检测的目的,本研究采用了生物启发式遗传搜索(GS),在相似应用中传达了iv udof重复特征的范围,并研究了利用根漏洞进行获取使用机器学习预测未知恶意软件的最佳功能。所有这些实验涉及的功能类别是权限,目录路径,基于代码的,系统命令和电话。在检测根漏洞时,涉及的类别是称为Android调试桥(ADB)的新颖功能。通过获得这些实验的最佳功能,本研究将其应用于机器学习中以预测未知恶意软件。为了证明结果,该实验评估了六个基准(例如,准确性,真阳性率(TPR),假阳性率(FPR),召回率,精度和f量度)以测试预测和性能。通过收集出色的结果,建立了一个网站,以机器学习机制验证独特的静态功能,以研究其效率和实用性。通过收集的结果,本研究证明了能够预测未知恶意软件的独特静态功能以及根漏洞。通过使用静态分析,研究,选择,提议,设计和评估了这项研究的最佳功能,以检测恶意软件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号