首页> 外文期刊>Journal of network and computer applications >Alert correlation framework for malware detection by anomaly-based packet payload analysis
【24h】

Alert correlation framework for malware detection by anomaly-based packet payload analysis

机译:通过基于异常的数据包有效负载分析来检测恶意软件的警报关联框架

获取原文
获取原文并翻译 | 示例

摘要

Intrusion detection based on identifying anomalies typically emits a large amount of reports about the malicious activities monitored; hence information gathered is difficult to manage. In this paper, an alert correlation system capable of dealing with this problem is introduced. The work carried out has focused on the study of a particular family of sensors, namely those which analyze the payload of network traffic looking for malware. Unlike conventional approaches, the information provided by the network packet headers is not taken into account. Instead, the proposed strategy considers the payload of the monitored traffic and the characteristics of the models built during the training of such detectors, in this way supporting the general-purpose incident management tools. It aims to analyze, classify and prioritize alerts issued, based on two criteria: the risk of threats being genuine and their nature. Incidences are studied both in a one-to-one and in a group context. This implies the consideration of two different processing layers: The first one allows fast reactions and resilience against certain adversarial attacks, and on the other hand, the deeper layer facilitates the reconstruction of attack scenarios and provides an overview of potential threats. Experiments conducted by analyzing real traffic demonstrated the effectiveness of the proposal.
机译:基于识别异常的入侵检测通常会发出大量有关所监视恶意活动的报告;因此收集的信息很难管理。本文介绍了一种能够解决该问题的警报关联系统。进行的工作集中于对特定传感器家族的研究,即那些分析网络流量有效载荷以寻找恶意软件的传感器。与常规方法不同,不考虑网络数据包头提供的信息。取而代之的是,提出的策略考虑了监视流量的有效负载以及在训练此类检测器期间构建的模型的特征,从而支持了通用事件管理工具。它旨在基于以下两个标准对发出的警报进行分析,分类和优先级排序:威胁的真实性和威胁的性质。在一对一和小组情况下研究发病率。这意味着需要考虑两个不同的处理层:第一个处理层可以对某些对抗性攻击做出快速反应和弹性,另一方面,更深的层可以促进攻击场景的重构并提供潜在威胁的概述。通过分析实际流量进行的实验证明了该建议的有效性。

著录项

  • 来源
    《Journal of network and computer applications》 |2017年第11期|11-22|共12页
  • 作者单位

    Univ Complutense Madrid, Sch Comp Sci, Dept Software Engn & Artificial Intelligence DISI, Grp Anal Secur & Syst, Off 431,Calle Prof Jose Garcia Santesmases S-N, E-28040 Madrid, Spain;

    Univ Complutense Madrid, Sch Comp Sci, Dept Software Engn & Artificial Intelligence DISI, Grp Anal Secur & Syst, Off 431,Calle Prof Jose Garcia Santesmases S-N, E-28040 Madrid, Spain;

    Univ Complutense Madrid, Sch Comp Sci, Dept Software Engn & Artificial Intelligence DISI, Grp Anal Secur & Syst, Off 431,Calle Prof Jose Garcia Santesmases S-N, E-28040 Madrid, Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Alert correlation; Anomalies; Intrusion detection system; Malware; Network; Payload;

    机译:警报关联;异常;入侵检测系统;恶意软件;网络;有效载荷;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号