首页> 外文期刊>Computers & Security >A framework for metamorphic malware analysis and real-time detection
【24h】

A framework for metamorphic malware analysis and real-time detection

机译:变形恶意软件分析和实时检测的框架

获取原文
获取原文并翻译 | 示例

摘要

Metamorphism is a technique that mutates the binary code using different obfuscations. It is difficult to write a new metamorphic malware and in general malware writers reuse old malware. To hide detection the malware writers change the obfuscations (syntax) more than the behavior (semantic) of such a new malware. On this assumption and motivation, this paper presents a new framework named MARD for Metamorphic Malware Analysis and Real-Time Detection. As part of the new framework, to build a behavioral signature and detect metamorphic malware in real-time, we propose two novel techniques, named ACFG (Annotated Control Flow Graph) and SWOD-CFWeight (Sliding Window of Difference and Control Flow Weight). Unlike other techniques, ACFG provides a faster matching of CFGs, without compromising detection accuracy; it can handle malware with smaller CFGs, and contains more information and hence provides more accuracy than a CFG. SWOD-CFWeight mitigates and addresses key issues in current techniques, related to the change of the frequencies of opcodes, such as the use of different compilers, compiler optimizations, operating systems and obfuscations. The size of SWOD can change, which gives anti-malware tool developers the ability to select appropriate parameter values to further optimize malware detection. CFWeight captures the control flow semantics of a program to an extent that helps detect metamorphic malware in real-time. Experimental evaluation of the two proposed techniques, using an existing dataset, achieved detection rates in the range 94%-99.6%. Compared to ACFG, SWOD-CFWeight significantly improves the detection time, and is suitable to be used where the time for malware detection is more important as in real-time (practical) anti-malware applications.
机译:变形是一种使用不同的混淆使二进制代码变异的技术。编写新的变态恶意软件很困难,并且一般而言,恶意软件编写者会重用旧的恶意软件。为了隐藏检测,恶意软件编写者对混淆(语法)的更改要多于此类新恶意软件的行为(语义)。基于这种假设和动机,本文提出了一种用于变形恶意软件分析和实时检测的名为MARD的新框架。作为新框架的一部分,为了构建行为签名并实时检测变态恶意软件,我们提出了两种新颖的技术,分别称为ACFG(带注释的控制流图)和SWOD-CFWeight(差异和控制流权重的滑动窗口)。与其他技术不同,ACFG可以更快地匹配CFG,而不会影响检测精度。它可以使用较小的CFG来处理恶意软件,并且包含更多信息,因此比CFG更具准确性。 SWOD-CFWeight缓解并解决了当前技术中与操作码频率变化有关的关键问题,例如使用不同的编译器,编译器优化,操作系统和混淆。 SWOD的大小可以改变,这使反恶意软件工具开发人员可以选择适当的参数值来进一步优化恶意软件检测。 CFWeight在一定程度上捕获了程序的控制流语义,有助于实时检测变形的恶意软件。使用现有数据集对这两种提议技术进行的实验评估得出检出率在94%-99.6%范围内。与ACFG相比,SWOD-CFWeight大大缩短了检测时间,适用于在实时(实用)反恶意软件应用程序中恶意软件检测时间更为重要的情况下使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号