首页> 外文OA文献 >Robust real-time vision-based aircraft tracking from Unmanned Aerial Vehicles
【2h】

Robust real-time vision-based aircraft tracking from Unmanned Aerial Vehicles

机译:基于无人驾驶飞行器的基于实时视觉的强大飞机跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Aircraft tracking plays a key and important rolein the Sense-and-Avoid system of Unmanned Aerial Vehicles(UAVs). This paper presents a novel robust visual trackingalgorithm for UAVs in the midair to track an arbitrary aircraftat real-time frame rates, together with a unique evaluationsystem. This visual algorithm mainly consists of adaptivediscriminative visual tracking method, Multiple-Instance (MI)learning approach, Multiple-Classifier (MC) voting mechanismand Multiple-Resolution (MR) representation strategy, that iscalled Adaptive M3tracker, i.e. AM3. In this tracker, theimportance of test sample has been integrated to improvethe tracking stability, accuracy and real-time performances.The experimental results show that this algorithm is morerobust, efficient and accurate against the existing state-of-arttrackers, overcoming the problems generated by the challengingsituations such as obvious appearance change, variant sur-rounding illumination, partial aircraft occlusion, blur motion,rapid pose variation and onboard mechanical vibration, lowcomputation capacity and delayed information communicationbetween UAVs and Ground Station (GS). To our best knowledge,this is the first work to present this tracker for solving onlinelearning and tracking freewill aircraft/intruder in the UAVs.
机译:飞机跟踪在无人飞行器(UAV)的“感官与回避”系统中起着关键和重要的作用。本文提出了一种新颖的,健壮的,适用于空中无人机的视觉跟踪算法,可以实时帧速率跟踪任意飞机,并具有独特的评估系统。该视觉算法主要由自适应判别式视觉跟踪方法,多实例(MI)学习方法,多分类器(MC)投票机制和多分辨率(MR)表示策略组成,称为自适应M3tracker,即AM3。在该跟踪器中,已经集成了测试样本的重要性,以提高跟踪稳定性,准确性和实时性。实验结果表明,该算法相对于现有的现有跟踪器更加鲁棒,高效,准确,克服了由跟踪器产生的问题。具有挑战性的情况包括外观变化明显,周围照明变化,飞机部分遮挡,模糊运动,快速姿态变化和机载机械振动,低计算能力以及无人机与地面站(GS)之间的信息通信延迟。据我们所知,这是介绍此跟踪器以解决在线学习和跟踪无人机中自由意志飞机/入侵者的第一项工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号