首页> 外文OA文献 >Inexact Bregman iteration with an application toudPoisson data reconstruction
【2h】

Inexact Bregman iteration with an application toudPoisson data reconstruction

机译:不精确的Bregman迭代与应用程序 ud泊松数据重建

摘要

This work deals with the solution of image restoration problems by anuditerative regularization method based on the Bregman iteration. Any iteration of thisudscheme requires to exactly compute the minimizer of a function. However, in someudimage reconstruction applications, it is either impossible or extremely expensive toudobtain exact solutions of these subproblems. In this paper, we propose an inexactudversion of the iterative procedure, where the inexactness in the inner subproblemudsolution is controlled by a criterion that preserves the convergence of the Bregmanuditeration and its features in image restoration problems. In particular, the methodudallows to obtain accurate reconstructions also when only an overestimation of theudregularization parameter is known. The introduction of the inexactness in the iterativeudscheme allows to address image reconstruction problems from data corrupted byudPoisson noise, exploiting the recent advances about specialized algorithms for theudnumerical minimization of the generalized Kullback–Leibler divergence combined withuda regularization term. The results of several numerical experiments enable to evaluate
机译:这项工作通过基于Bregman迭代的正则化方法来解决图像恢复问题。此 udscheme的任何迭代都需要精确计算函数的最小化器。但是,在某些 udimage重建应用程序中,要获得这些子问题的精确解决方案要么是不可能的,要么是非常昂贵的。在本文中,我们提出了一个迭代过程的不精确 udversion,其中内部子问题 udsolution中的不精确由一个准则控制,该准则保留了Bregman udumation的收敛性及其在图像恢复问题中的特征。特别地,该方法也仅当仅知道过高估计的非正则化参数时,才获得准确的重构。迭代 udscheme中不精确性的引入可以解决由于 udPoisson噪声破坏的数据而产生的图像重建问题,它利用了关于专用算法的最新进展,该算法用于最小化广义Kullback-Leibler散度与 uda正则化项结合的数字最小化。几个数值实验的结果可以评估

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号