首页> 外文OA文献 >Numerical simulations of the wing wake and tip vortex for air-to-air refuelling
【2h】

Numerical simulations of the wing wake and tip vortex for air-to-air refuelling

机译:空中加油的机翼尾流和尾涡的数值模拟

摘要

The present research was carried out in the framework of the ASTRAEA IIproject, in collaboration with Cobham Mission Equipment. One part of theoverall ASTRAEA II project is to design an autonomous air-refuelling systembased on a wake model computed in real-time, which allows the flow field to bevisualised in a Synthetic Environment. In a previous part of the ASTRAEAproject a MATLAB® code was developed based on the extended lifting linemethod (referred to as the ELL code) which provides a refuelling tanker wakemodel. The aim of this project is to understand the tanker wake, to providemore detailed flow field predictions and to compare the results with the resultsfrom the ELL code to validate this reduced fidelity method.The understanding of the tanker wake and tip vortices was carried outthrough the use of computational fluid dynamics (CFD) methods. CFDsimulations of three geometries were carried out and post-processed: the DLR-F6 aircraft geometry, the CRM aircraft geometry (both similar to the A330) andthe NACA0015 swept wing model of Gerontakos and Lee. The latter was used asa validation test case for the CFD modelling of the wake and the tip vortex. TheCFD simulations were performed using a geometry definition compatible withthe idealised model scale aircraft definitions used in the wind tunnelexperiments. Finally comparisons between the available CFD results and theELL code were carried out.The ELL code computes a qualitatively similar wake and tip vortex flow field,but only when the code is run with a different set-up which requires morecomputing resources. The addition of the simple fuselage model to the ELL codehas provided an improvement in the results compared with the CFD solutions.The ELL code does not model the vortex roll up and there are notabledifferences in the near-field region in particular. Although the flow fieldstructure is similar between the ELL and the CFD results, there are notabledifferences in the local disturbance flow field. In particular, for someconfigurations, the tip vortex strength is underpredicted by up to a factor ofthree relative to the CFD results.
机译:本研究是在ASTRAEA II项目的框架内与Cobham Mission Equipment合作进行的。 ASTRAEA II总体项目的一部分是设计一种基于实时计算的尾流模型的自主加油系统,该系统可以在合成环境中可视化流场。在ASTRAEA项目的前一部分中,基于扩展的起重线方法(称为ELL代码)开发了MATLAB®代码,该方法提供了加油机的尾流模型。该项目的目的是了解油轮尾流,提供更详细的流场预测,并将结果与​​ELL代码的结果进行比较以验证这种降低保真度的方法。通过使用对油轮尾流和尖端涡流进行了了解计算流体动力学(CFD)方法的概述。进行了三种几何形状的CFD模拟并进行了后处理:DLR-F6飞机几何形状,CRM飞机几何形状(均与A330相似)以及Gerontakos和Lee的NACA0015后掠翼模型。后者用作尾流和尖端涡流CFD建模的验证测试用例。 CFD仿真是使用与风洞实验中使用的理想模型比例飞机定义兼容的几何定义进行的。最后,将可用的CFD结果与ELL代码进行了比较。ELL代码计算出定性相似的尾流和尖端涡流场,但仅当代码以不同的设置运行且需要更多计算资源时才计算。与CFD解决方案相比,在ELL代码中添加了简单的机身模型提供了改进的结果.ELL代码没有对涡旋卷起进行建模,特别是在近场区域中存在显着差异。尽管ELL和CFD结果之间的流场结构相似,但局部扰动流场之间存在显着差异。特别地,对于某些配置,相对于CFD结果,尖端涡旋强度最多可预测不到三分之一。

著录项

  • 作者

    Miranda Alice;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号