首页> 外文OA文献 >Uncertainty estimation using the moments method facilitated by automatic differentiation in Matlab
【2h】

Uncertainty estimation using the moments method facilitated by automatic differentiation in Matlab

机译:Matlab自动微分法促进使用矩量法的不确定度估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computational models have long been used to predict the performance of some baselinedesign given its design parameters. Given inconsistencies in manufacturing,the manufactured product always deviates from the baseline design. There is currentlymuch interest in both evaluating the effects of variability in design parameterson a design’s performance (uncertainty estimation), and robust optimization of thebaseline design such that near optimal performance is obtained despite variabilityin design parameters. Traditionally, uncertainty analysis is performed by expensiveMonte-Carlo methods. This work considers the alternative moments method for uncertaintypropagation and its implementation in Matlab.In computational design it is assumed a computational model gives a sufficientlyaccurate approximation to a design’s performance. As such it can be used for estimatingstatistical moments (expectation, variance, etc.) of the design due to knownstatistical variation of the model’s parameters, e.g., by the Monte Carlo approach. Inthe moments method we further assume the model is sufficiently differentiable thata Taylor series approximation to a model may be constructed, and the moments ofthe Taylor series may be taken analytically to yield approximations to the model’smoments.In this thesis we generalise techniques considered within the engineering communityand design and document associated software to generate arbitrary order Taylorseries approximations to arbitrary order statistical moments of computational modelsimplemented in Matlab; Taylor series coefficients are calculated using automatic differentiation.This approach is found to be more efficient than a standard Monte Carlomethod for the small-scale model test problems we consider. Previously Christiansonand Cox (2005) have indicated that the moments method will be non-convergent inthe presence of complex poles of the computational model and suggested a partitioningmethod to overcome this problem. We implement a version of the partitioningmethod and demonstrate that it does result in convergence of the moments method.Additionally, we consider, what we term, the branch detection problem in order toascertain if our Taylor series approximation might only be valid piecewise.
机译:给定其设计参数,计算模型长期以来一直用于预测某些基准设计的性能。鉴于制造中的不一致,制成品总是偏离基准设计。目前,人们既对评估设计参数的可变性对设计性能的影响(不确定性估计),又对基线设计进行鲁棒性优化(尽管设计参数具有可变性)获得了接近最佳的性能,都产生了浓厚的兴趣。传统上,不确定性分析是通过昂贵的蒙特卡洛方法进行的。这项工作考虑了不确定性传播的替代矩量法及其在Matlab中的实现。在计算设计中,假定计算模型可以为设计性能提供足够准确的近似值。这样,由于模型参数的已知统计变化(例如,通过蒙特卡洛方法),它可用于估算设计的统计矩(期望,方差等)。在矩量法中,我们进一步假设模型具有足够的可微性,可以构造模型的泰勒级数逼近,并且可以通过分析泰勒级数的矩来得出模型矩量的近似值。工程界以及设计和文档相关软件,以生成在Matlab中实现的计算模型的任意阶统计矩的任意阶泰勒级数逼近;泰勒级数系数是使用自动微分计算的。对于我们考虑的小规模模型测试问题,该方法比标准的蒙特卡洛方法更有效。此前,Christiansonand Cox(2005)曾指出,矩量法在存在计算模型的复杂极点的情况下将是非收敛性的,并提出了一种分区方法来克服这一问题。我们实现了分区方法的一种版本,并证明了它确实导致矩方法的收敛。此外,我们考虑所谓的分支检测问题,以确定我们的泰勒级数逼近是否可能仅是分段有效。

著录项

  • 作者

    Menshikova M.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号