首页> 外文OA文献 >Monocular vision based indoor simultaneous localisation and mapping for quadrotor platform
【2h】

Monocular vision based indoor simultaneous localisation and mapping for quadrotor platform

机译:基于单目视觉的四旋翼平台室内同时定位与制图

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An autonomous robot acting in an unknown dynamic environment requires a detailed understandingof its surroundings. This information is provided by mapping algorithms which arenecessary to build a sensory representation of the environment and the vehicle states. This aidsthe robot to avoid collisions with complex obstacles and to localize in six degrees of freedom i.e.x, y, z, roll, pitch and yaw angle. This process, wherein, a robot builds a sensory representationof the environment while estimating its own position and orientation in relation to those sensorylandmarks, is known as Simultaneous Localisation and Mapping (SLAM).A common method for gauging environments are laser scanners, which enable mobile robots toscan objects in a non-contact way. The use of laser scanners for SLAM has been studied andsuccessfully implemented. In this project, sensor fusion combining laser scanning and real timeimage processing is investigated. Hence, this project deals with the implementation of a VisualSLAM algorithm followed by design and development of a quadrotor platform which is equippedwith a camera, low range laser scanner and an on-board PC for autonomous navigation andmapping of unstructured indoor environments.This report presents a thorough account of the work done within the scope of this project.It presents a brief summary of related work done in the domain of vision based navigationand mapping before presenting a real time monocular vision based SLAM algorithm. A C++implementation of the visual slam algorithm based on the Extended Kalman Filter is described.This is followed by the design and development of the quadrotor platform. First, the baselinespeci cations are described followed by component selection, dynamics modelling, simulationand control. The autonomous navigation algorithm is presented along with the simulationresults which show its suitability to real time application in dynamic environments. Finally,the complete system architecture along with ight test results are described.
机译:在未知动态环境中运行的自主机器人需要对周围环境有详细的了解。该信息由映射算法提供,这是建立环境和车辆状态的感官表示所必需的。这有助于机器人避免与复杂障碍物碰撞并定位在六个自由度,即x,y,z,侧倾,俯仰和偏航角。该过程称为机器人同时建立环境的感官表示,同时估计其自身相对于那些感官地标的位置和方向的过程,被称为同时定位和制图(SLAM)。测量环境的常用方法是激光扫描仪,该方法可实现移动机器人以非接触方式扫描物体。已经研究并成功实现了将激光扫描仪用于SLAM。在该项目中,研究了结合激光扫描和实时图像处理的传感器融合。因此,该项目涉及VisualSLAM算法的实现,然后设计和开发了四旋翼平台,该平台配备了摄像头,低范围激光扫描仪和车载PC,用于自主导航和映射非结构化室内环境。在提出基于实时单眼视觉的SLAM算法之前,它简要介绍了在基于视觉的导航和制图领域中完成的相关工作。描述了基于扩展卡尔曼滤波器的视觉猛击算法的C ++实现,然后是四旋翼平台的设计和开发。首先,描述了基线规格,然后描述了组件选择,动力学建模,仿真和控制。提出了自主导航算法,并给出了仿真结果,表明该算法适用于动态环境中的实时应用。最后,描述了完整的系统架构以及测试结果。

著录项

  • 作者

    Agarwal Saurav;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号