首页> 外文OA文献 >Etude d'estimations d'erreur a posteriori et d'adaptivité basée sur des critères d'arrêt et raffinement de maillages pour des problèmes d'écoulements multiphasiques et thermiques. Application aux procédés de récupération assistée d'huile
【2h】

Etude d'estimations d'erreur a posteriori et d'adaptivité basée sur des critères d'arrêt et raffinement de maillages pour des problèmes d'écoulements multiphasiques et thermiques. Application aux procédés de récupération assistée d'huile

机译:基于停止和改进多相和热流问题网格的准则,研究后验误差和自适应误差估计。适用于强化采油工艺

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The goal of this thesis is the a posteriori error analysis and the conception of adaptive strategies based on stopping criteria and local mesh refinement. We treat a class of multidimensional degenerate parabolic equations which represent typical examples of industrial interest. In Chapter 1 we consider the time-dependent two-phase Stefan problem that models a phase change process governed by the Fourier law. We regularize the relation between the enthalpy and the temperature and we discretize the problem by the backward Euler temporal stepping method with a conforming spatial discretization, such as the finite element or the vertex-centered finite volume one. We prove un upper bound for the dual norm of the residual, the L2(0; T;H-1) error in the enthalpy, and L2(0; T;L2) error in the temperature, by fully computable error estimators. These estimators include: an estimator associated to the regularization error, an estimator associated to the linearization error, an estimator associated to the temporal error, and an estimator associated to the spatial error. Consequently, these estimators allow to formulate an adaptive resolution algorithm where the corresponding errors can be equilibrated. We also propose a strategy of local mesh refinement. Finally, we prove the efficiency of our a posteriori estimates. A numerical test illustrates the efficiency of our estimates and the performance of the adaptive algorithm. In particular, effectivity indices close to the optimal value of 1 are obtained. In Chapter 2 we derive a posteriori error estimates for the isothermal compositional model of the multiphase Darcy ow in porous media, consisting of a system of strongly coupled nonlinear unsteady partial differential and nonlinear algebraic equations. This model is discretized by a cell-centered finite volume scheme in space with the backward Euler temporal stepping. We establish an upper bound for a dual norm of the residual augmented by a nonconformity evaluation term by fully computable estimators. We focus in this chapter on the formulation of criteria for the iterative linearization (such as the Newton method) and iterative algebraic solvers (such as the GMRes method) that stop the iterations when the corresponding error components no longer affect the overall estimate significantly. We apply our analysis to several real-life reservoir engineering examples to confirm that significant computational gains (up to an order of magnitude in terms of the total number of algebraic solver iterations) can be achieved thanks to our adaptive stopping criteria, already on fixed meshes, and this without any noticeable loss of precision. In Chapter 3 we complete the model described in Chapter 2 by considering a nonisothermal condition for the flow in order to treat the general thermal multiphase compositional foow in porous media. For this problem, we derive fully computable a posteriori error estimates analogous to Chapter 2 for a dual norm of the residual supplemented by a nonconformity evaluation term. We then show how to estimate separately the space, time, linearization, and algebraic errors, giving the possibility to formulate adaptive stopping and balancing criteria. Specification of the abstract theory to the so-called dead oil model closes the chapter. The proof of efficiency of our a posteriori estimate is also provided. Finally, in Chapter 4 we consider the Steam-Assisted Gravity Drainage (SAGD) process, more precisely a thermal oil-recovery technique of the deal oil type with steam injection designed to increase the oil mobility. The main subjects of this chapter are to apply the a posteriori error analysis of Chapters 2 and 3, propose a simplification and a quadrature formula for an easy evaluation of the estimators, propose a space-time adaptive mesh reffinement algorithm, and illustrate by numerical results on real-life examples its performance. In particular, a signi cant gain in terms of the number of mesh cells is achieved on examples in 3 space dimensions.
机译:本文的目标是后验误差分析和基于停止准则和局部网格细化的自适应策略的概念。我们处理一类多维退化的抛物线方程,它们代表了工业利益的典型例子。在第一章中,我们考虑了与时间有关的两阶段Stefan问题,该问题为傅立叶定律控制的相变过程建模。我们规范化了焓和温度之间的关系,并通过后向欧拉时间步进方法对离散问题进行离散化,并采用了一致的空间离散化方法,例如有限元或以顶点为中心的有限体积。通过完全可计算的误差估计量,我们证明了残差对偶范数的无上限,焓的L2(0; T; H-1)误差和温度的L2(0; T; L2)误差。这些估计器包括:与正则化误差相关联的估计器,与线性化误差相关联的估计器,与时间误差相关联的估计器以及与空间误差相关联的估计器。因此,这些估计器允许制定一种自适应分辨率算法,在该算法中可以平衡相应的误差。我们还提出了局部网格细化的策略。最后,我们证明了后验估计的效率。数值测试说明了我们的估计效率和自适应算法的性能。特别地,获得接近最佳值1的有效性指数。在第二章中,我们得出了多孔介质中多相达西流的等温成分模型的后验误差估计,该模型由强耦合的非线性非稳态偏微分方程和非线性代数方程组组成。通过向后的Euler时间步进在空间中以单元为中心的有限体积方案离散化该模型。我们为残差对偶范数建立了一个上限,该残差由完全可计算的估计量增加了一个不合格评估项。在本章中,我们将重点放在迭代线性化(例如Newton方法)和迭代代数求解器(例如GMRes方法)的准则的制定上,当相应的误差分量不再显着影响总体估计时,这些准则将停止迭代。我们将分析应用到几个实际的油藏工程实例中,以确认由于我们已经在固定网格上实现了自适应停止准则,因此可以实现显着的计算增益(根据代数求解器迭代的总数达到一个数量级)。 ,这不会造成任何明显的精度损失。在第3章中,我们通过考虑非等温流动条件来完成第2章中描述的模型,以便处理多孔介质中的一般热多相成分流。对于这个问题,我们得出了完全可计算的后验误差估计,类似于第二章,对残差的双重范式补充了不合格评估项。然后,我们展示了如何分别估计空间,时间,线性化和代数误差,从而提供了制定自适应停止和平衡标准的可能性。本章以抽象理论对所谓的死油模型的规范为结尾。还提供了我们后验估计效率的证明。最后,在第4章中,我们考虑了蒸汽辅助重力排水(SAGD)工艺,更确切地说是一种通过注入蒸汽来设计处理油类型的热采油技术,旨在提高油的流动性。本章的主要主题是应用第2章和第3章的后验误差分析,提出简化和求和公式,以便于估计器的容易评估,提出时空自适应网格精化算法,并通过数值结果进行说明。在现实生活中的例子其性能。特别地,在3个空间维度上的示例上实现了在网格单元数量方面的显着增加。

著录项

  • 作者

    Yousef Soleiman;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号