首页> 外文OA文献 >On the development of a meshless method to study multibody systems using computational fluid dynamics
【2h】

On the development of a meshless method to study multibody systems using computational fluid dynamics

机译:关于使用计算流体动力学研究多体系统的无网格方法的发展

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multibody systems, which consist of several separate or interconnected, rigid or flexible bodies, occur frequently in problems of aerospace engineering. Such problems can be difficult to solve using conventional finite volume methods in computational fluid dynamics. This is particularly so if the bodies are required to undergo translational or rotational displacements during time-dependent simulations, which occur, for example, with cases involving store release or control surface deflection. These problems are generally limited to those when the movements are small or known a-priori. This thesis investigates the use of the meshless method to solve these difficult multibody systems using computational fluid dynamics, with the aim of performing moving-body simulations involving large scale motions, with no restrictions on the movement. An implicit meshless scheme is developed to solve the Euler, laminar and Reynolds-Averaged Navier-Stokes equations. Spatial derivatives are approximated using a least squares method on clouds of points. The resultant system of equations is linearised and solved implicitly using approximate, analytical Jacobian matrices and a preconditioned Krylov subspace iterative method. The details of the spatial discretisation, linear solver and construction of the Jacobian matrix are discussed, and results which demonstrate the performance of the scheme are presented for steady and unsteady flows in two and three-dimensions. The selection of the stencils over the computational domain for the meshless solver is vital for the method to be used to solve problems involving multibody systems accurately and efficiently. The computational domain is obtained using overlapping point distributions associated with each body in the system. Stencil selection is relatively straight forward if the point distributions are isotropic in nature; however, this is rarely the case in computations that solve the Navier-Stokes equations. A fully automatic method of selecting the stencils is outlined, in which the original connectivity and the concept of a resolving direction are used to help construct good quality stencils with limited user input. The methodology is described, and results, that are solutions to the Navier-Stokes equations in two-dimensions and the Euler equations in three-dimensions, are presented for various systems.
机译:在航空航天工程中经常出现由多个分开的或相互连接的,刚性的或柔性的主体组成的多体系统。在计算流体动力学中使用常规的有限体积方法可能难以解决这些问题。如果要求车身在与时间有关的模拟过程中需要进行平移或旋转位移,则尤其如此,例如,在涉及存储释放或控制表面偏斜的情况下会发生这种位移。这些问题通常仅限于机芯较小或先验运动的情况。本文研究了使用无网格方法解决使用计算流体动力学解决这些困难的多体系统的问题,目的是进行涉及大规模运动的运动体模拟,而不受运动的限制。开发了一种隐式无网格方案来求解Euler,层流和Reynolds平均Navier-Stokes方程。使用最小二乘法在点云上近似空间导数。使用近似的解析雅可比矩阵和预处理的Krylov子空间迭代方法,对所得方程组进行线性化和隐式求解。讨论了空间离散化,线性求解器和Jacobian矩阵构造的细节,并给出了证明该方法在二维和三维中稳定和非稳定流动方面的性能的结果。对于无网格求解器而言,在计算域中选择模板是至关重要的,因为该方法可用于准确有效地解决涉及多体系统的问题。使用与系统中每个主体关联的重叠点分布来获得计算域。如果点分布本质上是各向同性的,则模板选择相对简单。但是,在求解Navier-Stokes方程的计算中很少出现这种情况。概述了一种选择模板的全自动方法,其中原始的连接性和解析方向的概念用于帮助在用户输入受限的情况下构建高质量的模板。描述了该方法,并给出了针对各种系统的二维Navier-Stokes方程和三维Euler方程的解决方案结果。

著录项

  • 作者

    Kennett D;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号