首页> 外文OA文献 >Risk prediction of product-harm events using rough sets and multiple classifier fusion : an experimental study of listed companies in China
【2h】

Risk prediction of product-harm events using rough sets and multiple classifier fusion : an experimental study of listed companies in China

机译:基于粗糙集和多分类器融合的产品危害事件风险预测:中国上市公司的实验研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the increasing of frequency and destructiveness of product-harm events, study on enterprise crisis management becomes essentially important, but little literature thoroughly explores the risk prediction method of product-harm event. In this study, an initial index system for risk prediction was built based on the analysis of the key drivers of the product-harm event's evolution; ultimately, nine risk-forecasting indexes were obtained using rough set attribute reduction. With the four indexes of cumulative abnormal returns as the input, fuzzy clustering was used to classify the risk level of a product-harm event into four grades. In order to control the uncertainty and instability of single classifiers in risk prediction, multiple classifier fusion was introduced and combined with self-organising data mining (SODM). Further, an SODM-based multiple classifier fusion (SB-MCF) model was presented for the risk prediction related to a product-harm event. The experimental results based on 165 Chinese listed companies indicated that the SB-MCF model improved the average predictive accuracy and reduced variation degree simultaneously. The statistical analysis demonstrated that the SB-MCF model significantly outperformed six widely used single classification models (e.g. neural networks, support vector machine, and case-based reasoning) and other six commonly used multiple classifier fusion methods (e.g. majority voting, Bayesian method, and genetic algorithm).
机译:随着产品损害事件发生频率和破坏性的增加,对企业危机管理的研究变得至关重要,但很少有文献深入探讨产品损害事件的风险预测方法。在这项研究中,基于对产品危害事件演变的关键驱动因素的分析,建立了用于风险预测的初始指标体系;最终,通过粗糙集属性约简获得了九种风险预测指标。以累积的异常收益的四个指标作为输入,使用模糊聚类将产品损害事件的风险级别分为四个等级。为了控制单个分类器在风险预测中的不确定性和不稳定性,引入了多个分类器融合并将其与自组织数据挖掘(SODM)相结合。此外,提出了基于SODM的多分类器融合(SB-MCF)模型,用于与产品危害事件相关的风险预测。基于165家中国上市公司的实验结果表明,SB-MCF模型同时提高了平均预测准确性和降低了变化程度。统计分析表明,SB-MCF模型明显优于六个广泛使用的单一分类模型(例如神经网络,支持向量机和基于案例的推理)和其他六个常用的多重分类器融合方法(例如多数投票,贝叶斯方法,和遗传算法)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号