首页> 外文OA文献 >Evolving Fuzzy Rule-based Classifiers from Data Streams
【2h】

Evolving Fuzzy Rule-based Classifiers from Data Streams

机译:数据流中不断发展的基于模糊规则的分类器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new approach to the online classification of streaming data is introduced in this paper. It is based on a self-developing (evolving) fuzzy-rule-based (FRB) classifier system of Takagi-Sugeno ( eTS) type. The proposed approach, called eClass (evolving class ifier), includes different architectures and online learning methods. The family of alternative architectures includes: 1) eClass0, with the classifier consequents representing class label and 2) the newly proposed method for regression over the features using a first-order eTS fuzzy classifier, eClass1. An important property of eClass is that it can start learning ldquofrom scratch.rdquo Not only do the fuzzy rules not need to be prespecified, but neither do the number of classes for eClass (the number may grow, with new class labels being added by the online learning process). In the event that an initial FRB exists, eClass can evolve/develop it further based on the newly arrived data. The proposed approach addresses the practical problems of the classification of streaming data (video, speech, sensory data generated from robotic, advanced industrial applications, financial and retail chain transactions, intruder detection, etc.). It has been successfully tested on a number of benchmark problems as well as on data from an intrusion detection data stream to produce a comparison with the established approaches. The results demonstrate that a flexible (with evolving structure) FRB classifier can be generated online from streaming data achieving high classification rates and using limited computational resources.
机译:本文介绍了一种在线分类流数据的新方法。它基于Takagi-Sugeno(eTS)类型的自行开发(发展)的基于模糊规则(FRB)的分类器系统。所提出的方法称为eClass(进化类识别器),包括不同的体系结构和在线学习方法。该系列的替代架构包括:1)eClass0,其中分类器表示类标签; 2)新提出的使用一阶eTS模糊分类器eClass1对特征进行回归的方法。 eClass的一个重要特性是它可以从头开始学习。rdquo不仅不需要预先指定模糊规则,而且eClass的类数量也不需要(数量可能会增加,并且会添加新的类标签)。在线学习过程)。如果存在初始FRB,则eClass可以根据新到达的数据进一步发展/开发它。所提出的方法解决了流数据分类的实际问题(视频,语音,从机器人生成的感官数据,先进的工业应用,金融和零售链交易,入侵者检测等)。它已经在许多基准问题以及入侵检测数据流中的数据上成功进行了测试,以与已建立的方法进行比较。结果表明,可以从流式数据在线生成灵活的(具有不断发展的)FRB分类器,以实现高分类率并使用有限的计算资源。

著录项

  • 作者

    Angelov Plamen; Zhou Xiaowei;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号