首页> 美国政府科技报告 >Using a Neural Network to Predict Electricity Generation
【24h】

Using a Neural Network to Predict Electricity Generation

机译:使用神经网络预测发电量

获取原文

摘要

Predicting electricity generation is important to developing forecasts of airpollutant release and to evaluating the effectiveness of alternative policies which may reduce pollution. A neural network model (NUMOD) predicting electricity generation fueled by coal, natural gas, and oil (whose combustion released air pollutants) was developed to run on a personal computer. NUMOD uses three linked, feed-forward neural networks, each trained with the extended delta-bar-delta paradigm. One network predicts coal-fired generation. Its output is fed as input to each of the other two networks: one for gas-fired generation and the other for oil-fired generation. In addition, all three networks use inputs describing electricity demand, fuel prices, generating equipment, climate, and power pooling. Pearson's r calculated at various points during training, out-of-sample tests, and performance evaluation was greater than 0.93 and frequently greater than 0.98.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号