首页> 美国政府科技报告 >Least Squares Method in Heteroscedastic Censored Regression Models.
【24h】

Least Squares Method in Heteroscedastic Censored Regression Models.

机译:异方差截尾回归模型中的最小二乘法。

获取原文

摘要

Consider the heteroscedastic polynomial regression model Y=Beta(sub 0) + Beta(sub 1)X++Beta(sub p)X(sup p)+square root of Var(Y(straight line)X)epsilon where epsilon is independent of X, and Y is subject to random censoring. Provided that the censoring on Y is 'light' in some region of X, the authors construct a least squares estimator for the regression parameters whose asymptotic bias is shown to be as small as desired. The least squares estimator is defined as a functional of the Van Keilegom and Akritas (1999) estimator of the bivariate distribution P(X less than or equal to x, Y less than or equal to y), and its asymptotic normality is obtained.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号