首页> 美国政府科技报告 >Renormalization in Quantum Field Theory and the Riemann-Hilbert Problem II: TheBeta-Function, Diffeomorphisms and the Renormalization Group
【24h】

Renormalization in Quantum Field Theory and the Riemann-Hilbert Problem II: TheBeta-Function, Diffeomorphisms and the Renormalization Group

机译:量子场论中的重整化和Riemann-Hilbert问题II:贝塔函数,微分同胚和重整化群

获取原文

摘要

The authors showed in part I that the Hopf algebra H of Feynman graphs in a graphQFT is the algebra of coordinates on a complex infinite dimensional Lie group G. The authors show in this paper that the group G acts naturally on the complex space X of dimensionless coupling constants of the theory. This allows first of all to read off directly, without using the group G, the bare coupling constant and the renormalized one from the Riemann-Hilbert decomposition of the unrenormalized effective coupling constant viewed as a loop of formal diffeomorphisms. This shows that renormalization is intimately related with the theory of non-linear complex bundles on the Riemann sphere of the dimensional regularization parameter epsilon. It also allows to lift both the renormalization group and the beta-function as the asymptotic scaling in the group G.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号