首页> 美国政府科技报告 >Quantum Integrability for the Beltrami-Laplace Operator for GeodesicallyEquivalent Metrics. Integrability Criterium for Geodesic Equivalence. Separation of Variables
【24h】

Quantum Integrability for the Beltrami-Laplace Operator for GeodesicallyEquivalent Metrics. Integrability Criterium for Geodesic Equivalence. Separation of Variables

机译:用于Geodesically等效度量的Beltrami-Laplace算子的量子可积性。测地线等价的可积性判据。变量分离

获取原文

摘要

Given two Riemannian metrics on a closed connected manifold M(sup n), the authorsconstruct self-adjoint differential operators such that if the metrics have the same geodesics then the operators commute with the Beltrami-Laplace operator of the first metric and pairwise commute. If the operators commute and if they are linearly independent, then the metrics have the same geodesics. If all eigenvalues of one metric with respect to the other are different at least at one point of the manifold the authors can globally separate the variable in the equation on eigenfunctions of the Beltrami-Laplace operator.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号