首页> 美国政府科技报告 >Computational Methods for Sensitivity and Uncertainty Analysis for Environmental and Biological Models
【24h】

Computational Methods for Sensitivity and Uncertainty Analysis for Environmental and Biological Models

机译:环境和生物模型灵敏度和不确定性分析的计算方法

获取原文

摘要

Characterization of uncertainty associated with transport-transformation models is often of critical importance, as for example in cases where environmental and biological models are employed in risk assessment. However, uncertainty analysis using conventional methods such as standard Monte Carlo or Latin Hypercube Sampling may not be efficient, or even feasible, for complex, computationally demanding models. This work introduces a computationally efficient alternative method for uncertainty propagation, the Stochastic Response Surface Method (SRSM). The SRSM approximates uncertainties in model outputs through a series expansion in normal random variables (polynomial chaos expansion). The unknown coefficients in series expansions are calculated using a limited number of model simulations. This method is analogous to approximation of a deterministic system by an algebraic response surface. Further improvements in the computational efficiency of the SRSM are accomplished by coupling the SRSM with ADIFOR, which facilitates automatic calculation of partial derivatives in numerical models coded in Fortran. The coupled method, SRSM-ADIFOR, uses the model outputs and their derivatives to calculate the unknown coefficients. The SRSM and the SRSM-ADIFOR have been applied to a set of environmental and biological models. In all the case studies, the SRSM required an order of magnitude fewer simulations compared to conventional methods, and the SRSM-ADIFOR required even fewer simulations. Finally, this research addresses uncertainties associated with model structure and resolution with application to photochemical air quality modeling. A three dimensional version of the regulatory Reactive Plume Model (RPM), RPM-3D, has been developed and applied to understand model uncertainty.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号