首页> 外文期刊>Nuclear science and engineering >Efficient Subspace Methods-Based Algorithms for Performing Sensitivity, Uncertainty, and Adaptive Simulation of Large-Scale Computational Models
【24h】

Efficient Subspace Methods-Based Algorithms for Performing Sensitivity, Uncertainty, and Adaptive Simulation of Large-Scale Computational Models

机译:基于有效子空间方法的大型计算模型的敏感性,不确定性和自适应仿真算法

获取原文
获取原文并翻译 | 示例
       

摘要

This paper introduces the concepts and derives the mathematical theory of efficient subspace methods (ESMs) applied to the simulation of large-scale complex models, of which nuclear reactor simulation will serve as a test basis. ESMs are intended to advance the capabilities of predictive simulation to meet the functional requirements of future energy system simulation and overcome the inadequacies of current design methods. Some of the inadequacies addressed by ESM include lack of rigorous approach to perform comprehensive validation of the multitudes of models and input data used in the design calculations and lack of robust mathematical approaches to enhance fidelity of existing and advanced computational codes. To accomplish these tasks, the computational tools must be capable of performing the following three applications with both accuracy and efficiency: (a) sensitivity analysis of key system attributes with respect to various input data; (b) uncertainty quantification for key system attributes; and (c) adaptive simulation, also known as data assimilation, for adapting existing models based on the assimilated body of experimental information to achieve the best possible prediction accuracy. These three applications, involving large-scale computational models, are now considered computationally infeasible if both the input data and key system attributes or experimental information fields are large. This paper will develop the mathematical theory of ESM-based algorithms for these three applications. The treatment in this paper is based on linearized approximation of the associated computational models. Extension to higher-order approximations represents the focus of our ongoing research.
机译:本文介绍了这些概念,并推导了适用于大规模复杂模型仿真的有效子空间方法(ESM)的数学理论,其中核反应堆仿真将作为测试基础。 ESM旨在提高预测仿真的能力,以满足未来能源系统仿真的功能要求,并克服当前设计方法的不足。 ESM解决的一些不足之处包括缺乏对设计计算中使用的大量模型和输入数据进行全面验证的严格方法,以及缺乏增强现有和高级计算代码保真度的健壮数学方法。为了完成这些任务,计算工具必须能够准确且高效地执行以下三个应用程序:(a)对各种输入数据的关键系统属性进行敏感性分析; (b)关键系统属性的不确定性量化; (c)自适应模拟,也称为数据同化,用于基于同化的实验信息主体对现有模型进行调整,以实现最佳的预测精度。如果输入数据和关键系统属性或实验信息字段都很大,则这三个涉及大规模计算模型的应用程序现在被认为在计算上是不可行的。本文将针对这三个应用开发基于ESM的算法的数学理论。本文中的处理基于相关计算模型的线性近似。扩展到高阶近似代表了我们正在进行的研究的重点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号