首页> 美国政府科技报告 >Application of Machine Learning to Toolmarks: Statistically Based Methods for Impression Pattern Comparisons.
【24h】

Application of Machine Learning to Toolmarks: Statistically Based Methods for Impression Pattern Comparisons.

机译:机器学习在工具标记中的应用:基于统计的印象模式比较方法。

获取原文

摘要

The study focused on striation patterns left by tools and on cartridge casings from firearms. Since all impressions made by tools and firearms can be viewed as mathematical patterns composed of features, this study used the mathematics of multivariate statistical analysis in order to recognize variations in these patterns. In the context of computational pattern recognition, this is called machine learning. The mathematical details of machine learning can yield what Moran calls the quantitative difference between an identification and non-identification (Moran 2002). Mathematical details also enable the estimation of extrapolated identification error rates and, in some case, the calculation of rigorous, universal random-match probabilities. The current project was divided into three main tasks. First, toolmark pattern collection and archiving was conducted. Second, database and Web interface were constructed for the distribution of toolmark data, accompanied by related software development. Third, multivariate machine-learning methods relevant to the analysis of collected toolmarks were identified and used. This research succeeded in composing a set of objective and testable methods for associating toolmark impression evidence with the tools and firearms that produced them. Three-dimensional confocal microscopy, surface metrology, and multivariate statistical method are the core of the approach presented.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号