首页> 美国政府科技报告 >Multipliers of Commutative Banach Algebras
【24h】

Multipliers of Commutative Banach Algebras

机译:可交换Banach代数的乘子

获取原文

摘要

Form a commutative algebra M(A) , called the multiplier algebra of A . M(A) is complete under the strong operator topology. A can be algebraically embedded in M(A) as an ideal.nWhen A is semisimple, M(A) is also semisimple; and the maximal ideal space of A can be embedded in that of M(A) .nIf A is a supremum norm algebra, so is also M(A) . In this case there are three natural topologies for M(A) , namely, the norm topology a , the strong operator topology P and the compact-open topology K each being stronger than the following one. cr and, P are equivalent if and only if A has a compact Silov boundary. Under suitable assumptions, B and K are equivalent if and only if every countable union of compact subsets of the Silov boundary of A has a compact closure.

著录项

  • 作者

    Ju-Kwei Wang;

  • 作者单位
  • 年度 1959
  • 页码 1-41
  • 总页数 41
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工业技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号