首页> 美国政府科技报告 >Robust Bayesian Analysis for a Simply Elicitable Class of Prior Distributions
【24h】

Robust Bayesian Analysis for a Simply Elicitable Class of Prior Distributions

机译:一类简单可引入的先验分布的鲁棒Bayes分析

获取原文

摘要

Suppose that the lower or upper prior probability p of a measurable subset K in the parameter space Omega is given. Instead of eliciting just one prior density function, consider the class Gamma(sub p,K) of all the density functions compatible with the bound p. Under mild regularity conditions about the likelihood function, find the upper and lower bounds for the posterior probability of any measurable set A contained in Omega, as the density varies in Gamma(sub p,K). Such a scheme agrees with a robust Bayesian viewpoint. Conditions are found in order to check the robustness in the inferences, and then they are applied to some examples. The importance of the likelihood sets in ensuring robustness is shown.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号