首页> 美国政府科技报告 >How to Distinguish Neutron Star and Black Hole X-ray Binaries. Spectral Index and Quasi-Periodic Oscillation Frequency Correlation
【24h】

How to Distinguish Neutron Star and Black Hole X-ray Binaries. Spectral Index and Quasi-Periodic Oscillation Frequency Correlation

机译:如何区分中子星和黑洞X射线二进制。谱指数与准周期振荡频率相关

获取原文

摘要

Recent studies have revealed strong correlations between 1-10 Hz frequencies of quasiperiodic oscillations (QPOs) and the spectral power law index of several Black Hole (BH) candidate sources when seen in the low/hard state, the steep power-law (soft) state, and in transition between these states. In the soft state these index-QPO frequency correlations show a saturation of the photon index GAMMA approximately equal to 2.7 at high values of the low frequency nu(sub L). This saturation effect was previously identified as a black hole signature. In this paper we argue that this saturation does not occur, at least for one neutron star (NS) source 4U 1728-34, for which the index GAMMA monotonically increases with nu(sub L) to the values of 6 and higher. We base this conclusion on our analysis of approximately 1.5 Msec of RXTE archival data for 4U 1728-34. We reveal the spectral evolution of the Comptonized blackbody spectra when the source transitions from the hard to soft states. The hard state spectrum is a typical thermal Comptonization spectrum of the soft photons which originate in the disk and the NS outer photospheric layers. The hard state photon index is GAMMA approximately 2. The soft state spectrum consists of two blackbody components which are only slightly Comptonized. Thus we can claim (as expected from theory) that in NS sources thermal equilibrium is established for the soft state. To the contrary in BH sources, the equilibrium is never established due to the presence of the BH horizon. The emergent BH spectrum, even in the high/soft state, has a power law component. We also identify the low QPO frequency nu(sub L) as a fundamental frequency of the quasi-spherical component of the transition layer (presumably related to the corona and the NS and disk magnetic closed field lines). The lower frequency nu(sub SL) is identified as the frequency of oscillations of a quasi-cylindrical configuration of the TL (presumably related to the NS and disk magnetic open field lines). We also show that the presence of Fe K(sub alpha), emission-line strengths, QPOs, and the link between them does not depend on radio flux in 4U 1728-34.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号