首页> 美国政府科技报告 >Convergence and Order Reduction of Diagonally Implicit Runge-Kutta Schemes in the Method of Lines
【24h】

Convergence and Order Reduction of Diagonally Implicit Runge-Kutta Schemes in the Method of Lines

机译:线性方法中对角隐式Runge-Kutta格式的收敛与阶数约简

获取原文

摘要

Diagonally implicit Runge-Kutta discretizations of initial-boundary value problems in partial differential equations are studied. The derivation of bounds for the full discretization error under the assumption that the grid distances in space and time are independent parameters, is considered. The method of lines approach is used to exploit the B-convergence theory for Runge-Kutta schemes applied to stiff problems. Order reduction phenomena are emphasized. Numerical examples confirm theoretical results. It is shown that in partial differential equations, order reduction severely reduces the performances of higher order schemes.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号