首页> 美国政府科技报告 >Derivation of mid-infrared (5-25 microns) optical constants of some silicates and palagonite
【24h】

Derivation of mid-infrared (5-25 microns) optical constants of some silicates and palagonite

机译:推导出一些硅酸盐和palagonite的中红外(5-25微米)光学常数

获取原文

摘要

Recent reports concerning the mid-infrared reflectance properties of silicates coupled with recent observations of the Earth and other planets in the mid-infrared and the planned Thermal Emission Spectrometer scheduled as an instrument to be included on the Mars Observer all illustrate the increasing interest in the optical properties of materials in the mid-infrared and their direct application to remote sensing observations of other planetary surfaces. As the laboratory and observational data increase they will ultimately be modeled to aid in the understanding of the composition mineralogy, and distribution of the surface and atmospheric constituents on these bodies. In order to facilitate such quantitative analyses, knowledge regarding the optical constants (real (n) and imaginary (k) indices of refraction) of a wide variety of pertinent materials is required. Examples of the application of such quantitative analyses to the interpretation of Martian surface and atmospheric constituents, based on the optical constants of minerals, are presented. This study was initially conceived in order to aid in the interpretation of Martian surface and atmospheric aerosol mineralogy. As a result, the minerals included are biased toward samples which represent hydrated and hydroxylated silicates. These include the Al and Mg end members of the 1:1 layer lattice silicates, kaolinite and serpentine, respectively; an Al-bearing 2:1 layer lattice silicate, pyrophyllite; the Mg and Al smectite clays saponite and montmorillonite, respectively; and a palagonite, typically a poorly characterized alteration product of basaltic glass. The reflectivities of all samples were determined by placing them at the focus of a near-normal reflective attachment located in a Fourier transform spectrometer. To derive the optical constants of a material as a function of wavelength, researchers used the commonly employed technique of dispersion analysis.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号