首页> 美国政府科技报告 >Dynamic Study of Fragmentation and Energy Loss During High Velocity Impact
【24h】

Dynamic Study of Fragmentation and Energy Loss During High Velocity Impact

机译:高速冲击下破碎与能量损失的动态研究

获取原文

摘要

Research conducted under this contract can be divided into two main areas:hypervelocity (in the range up to 7 km/s) and high velocity (less than 1 km/s). Work in the former was performed at NASA-MSFC using the Light Gas Gun Facility. The lower velocity studies were conducted at Auburn University using the ballistic gun. The emphasis of the project was on the hypervelocity phenomenon especially in the characterization of the debris cloud formed by the primary impact events. Special devices were made to determine the angular distributions of momentum and energy of the debris cloud as a function of impact conditions. After several iteration processes, it was decided to concentrate on the momentum effort. Prototype devices were designed, fabricated, and tested. These devices were based on the conservation of momentum. Distributions of the debris cloud formed were measured by determining the amount of momentum transferred from the debris cloud to strategically placed pendulum measurement devices. The motion of the pendula was monitored using itegrated opto-interrupters. The distribution of momentum in the debris cloud was found to be a strong function of the impact condition. Small projectiles at high velocities were observed to produce finely dispersed debris whereas large projectiles generated discrete particles in the debris. Results also show that the momentum in the forward direction was enhanced due to the impact. This phenomenon of momentum multiplication was also observed in other studies and in computer simulations. It was initially planned to determine the energy distribution using deformation energy in a rod with strain gauges. Results from preliminary studies show that this technique is acceptable but too tedious. A new technique was explored based on measuring the heating effect of the debris cloud using an IR camera. The feasibility and sensitivity was established at Auburn University. This type of energy distribution measurement method can easily be adapted to the gas gun facility at MSFC. The objective of the lower velocity studies at Auburn was to simulate the damage produced in advanced materials by the lower energy debris cloud.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号