首页> 美国政府科技报告 >Modal decomposition of Hamiltonian variational equations
【24h】

Modal decomposition of Hamiltonian variational equations

机译:哈密​​顿变分方程的模态分解

获取原文

摘要

Over any finite arc of trajectory, the variational equations of a Hamiltonian system can be separated into 'normal' modes. This transformation is canonical, and the Lyapunov exponents over the trajectory arc occur as positive/negative pairs for conjugate modes, while the modal vectors remain unit vectors. This decomposition effectively solves the variational equations for any canonical, linear-dependent system. As an example, we study the Voyager I trajectory. In an interplanetary flyby, some of the modal variables increase by very large multiplicative factors, but this means that their conjugate modal variables decrease by those same very large multiplicative vectors. Maneuver strategies for this case are explored, and the minimum delta upsilon maneuver is found.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号