首页> 美国政府科技报告 >Measurement of gas bremsstrahlung from the insertion device beamlines of the advanced photon source
【24h】

Measurement of gas bremsstrahlung from the insertion device beamlines of the advanced photon source

机译:从先进光子源的插入装置光束线测量气体bre致辐射

获取原文

摘要

High energy electron storage rings generate energetic bremsstrahlung photons through radiative interaction of the electrons (or positrons) with the residual gas molecules inside the storage ring. The resulting radiation exits at an average emittance angle of (m(sub 0)c(sub 2)/E) radian with respect to the electron beam path, where m(sub 0)c(sup 2) is the rest mass of E the electron and E its kinetic energy. Thus, at straight sections of the storage rings, moving electrons will produce a narrow and intense monodirectional photon beam. At synchrotron radiation facilities, where beamlines are channeled out of the storage ring, a continuous gas bremsstrahlung spectrum, with a maximum energy of the electron beam, will be present. There are a number of compelling reasons that a measurement of the bremsstrahlung characteristics be conducted at the Advanced Photon Source (APS) storage ring. Although the number of residual gas molecules present in the storage ring at typical nTorr vacuum is low, because of the long straight paths of the electrons in the storage ring at APS, significant production of bremsstrahlung will be produced. This may pose a radiation hazard. It is then imperative that personnel be shielded from dose rates due to this radiation. There are not many measurements available for gas bremsstrahlung, especially for higher electron beam energies. The quantitative estimates of gas bremsstrahlung from storage rings as evaluated by Monte Carlo codes also have several uncertainties. They are in general calculated for air at atmospheric pressure, the results of which are then extrapolated to typical storage ring vacuum values (of the order of 10(sup -9) Torr). Realistically, the actual pressure profile can vary inside the narrow vacuum chamber. Also, the actual chemical composition of the residual gas inside the storage ring is generally different from that of air.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号