首页> 美国政府科技报告 >Finite Element Method for First Order Hyperbolic Systems
【24h】

Finite Element Method for First Order Hyperbolic Systems

机译:一阶双曲型方程组的有限元方法

获取原文

摘要

Finite element approximations to first order hyperbolic systems of Kreiss' form usub(t) + A sub 1 usub(x) + A sub 2 u = f in a rectangular domain omega = (0,1(x)0,T)is contained in R exp 2 with mixed initial and boundary conditions u(x,0) = O, usup(I)(0,t) = alpha usup(II)(0,t), usup(II)(1,t) = beta usup(I)(1,t) are studied. The above system is transformed into a symmetric positive system of Friedrich's type Au = F in omega with admissible boundary conditions (B - M)u = 0 on delta omega . A Continuous Galerkin Approximation is then applied. When the analytical solution u is an element of (H exp 3 ( omega ) intersection Wsup(2,infinity)( omega ))sup(n) and the approximate solution usub(h), which is assumed to be the Lagrange piecewise polynomial of degree one in both variables, and when the elements of discretisation K are equal rectangles, an error estimate which is a superconvergence result is obtained. (Atomindex citation 14:747323)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号