首页> 美国政府科技报告 >Utilizing Data and Knowledge Mining for Probabilistic Knowledge Bases
【24h】

Utilizing Data and Knowledge Mining for Probabilistic Knowledge Bases

机译:利用数据和知识挖掘实现概率知识库

获取原文

摘要

Problems can arise whenever inferencing is attempted on a knowledge base that isincomplete. Our work shows that data mining techniques can be applied to fill in incomplete areas in Bayesian Knowledge Bases (BKBs), as well as in other knowledge-based systems utilizing probabilistic representations. The problem of inconsistency in BKBs has been addressed in previous work, where reinforcement learning techniques from neural networks were applied. However, the issue of automatically solving incompleteness in BKBs has yet to be addressed. Presently, incompleteness in BKBs is repaired through the application of traditional knowledge acquisition techniques. We show how association rules can be extracted from databases in order to replace excluded information and express missing relationships. A methodology for incorporating those results while maintaining a consistent knowledge base is also included.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号